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Abstract

This paper presents a synthesis of results on the concept of � -additive
measures and the notion of representation of a fuzzy measure, since
their introduction by the author in 1996. The collection of results will
limit itself to results which are not connected with multicriteria deci-
sion making, since those are presented in a companion paper in this
book, co-authored with Marc Roubens. The paper presents the concept
of representation of a set function over a finite set, and introduces the
well-known Möbius representation, and the interaction representation.
Properties and links among these representations are given, and the no-
tion of � -additive measure is introduced.

1 Introduction
Mathematically speaking, monotonic measures (or fuzzy measures, non-
additive measures, capacities, games) can be considered from different
points of view:

� Monotonic measures extend classical measures, by removing the addi-
tivity property. Underlying spaces are usually infinite, and some suit-
able algebra of sets is defined. Integration theory follows naturally.
This is the measure-theoretic viewpoint, leading to non-additive measure
theory, as developed in the books of Denneberg [6], Wang and Klir
[34], and Pap [27].
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� monotonic measures are particular cases of set functions, where usu-
ally monotonicity is not assumed. In the case of finite spaces, they
relate naturally to combinatorics (see e.g. Rota [28]), to cooperative
game theory [31], and also to pseudo-Boolean functions [19], which
are used in complexity analysis.

Needless to say, the kinds of mathematics underlying these two points of
view are completely different. In this paper, we adopt the second one, thus
viewing fuzzy measures as particular set functions, and applying tools of set
functions to them. In this framework, the Möbius transform, the concept of
interaction representation, and even the concept of � -additive measure arise
naturally. Further refinements are guided by more applicative concerns, like
decision theory. We will present some of them in this paper, although we
refer the reader to the companion paper in this book, co-authored with Marc
Roubens, for any issue related to multicriteria decision making.

This survey paper collects results scattered in many papers, mainly [7, 8,
11, 10, 12, 14, 13, 24, 16, 29]. The reader is referred to them for further details
and proofs.

Throughout the paper, we assume a finite space � with � elements, de-
noted simply �������
	
	�	��� if there is no fear of ambiguity. In a similar way,� �����	
	
	 will denote the cardinality of subsets ������
	
	�	 of � . We denote by� ��� the minimum and maximum operators on the real line.

2 Representations of a set function
We consider real valued set functions ��������� �"!$# , and several particular
cases. Set functions vanishing on the empty set are called games, while fuzzy
measures, which we will denote by % , refer to games which are monotonic
with respect to inclusion, i.e.&('*),+ %-� & �/.0%-� ) ��	
Consequently, fuzzy measures assume only positive values. In applications,
it is often required in addition that %-�1� �-23� .

For any set function � , the dual set function or conjugate set function of � is
defined by 4�$�5�-�/�62*�7��� �8!9�7�1�-:;���=<>� ' ��� (1)

where � : is the complement set of � .
We introduce some special properties of fuzzy measures. A fuzzy mea-

sure is said to be
� � -monotone ( �@?0� ) [3] if for all families of � subsets

&BA �
	�	
	�� &"C in � ,

%-�
CD
EGF A & E �/? HIKJFML�NMO A�PRQRQRQ P C
S �T!B�U��V

L V W A %-�;XEZY[L & E ��	 (2)
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Also, 1-monotonicity is defined as monotonicity.
� totally monotone if it is � -monotone for any �@? � .
� � -alternating ( �@? � ) if for all family of � subsets

&BA ��	
	
	
� &"C in � ,

%-�
C
XEGF A & E �/. HIKJFML�NMO A�PRQRQRQ P C
S �T!B�U��V

L V W A %-� DEZY[L & E ��	 (3)

2-monotone measures are also called supermodular or convex, while 2-altern-
ating measures are called submodular. If % is � -monotone, then

4% is � -altern-
ating, and reciprocally.

Any set function � is defined unambiguously by the collection of � � real
numbers �7� � ����7��� ��� ����7��� ��� ���
	�	
	�� �$�1� � . One can imagine any transforma-
tion � (e.g. a linear one) of these coefficients to get another set of coeffi-
cients. If the transformation is invertible, then it becomes equivalent to give
� �	���7�1�-�
��� N� � instead of ���7�1� ����� N� . In this case, we say that � ����� is a rep-
resentation of � . We give some examples of representation below.

Möbius representation: in combinatorics, the Möbius transform is well-
known (see e.g. Rota [28]), and has been rediscovered many times.
For any set function � , its Möbius transform ��� is defined by:

� � �1�-� �R2 H� N � �!B� ������� �7�Z�"��� <>�
' ��	 (4)

The inverse transform is the Zeta transform, expressed by:

�$�5�-� 2 H� N � � � �Z�"��� <M� ' ��	 (5)

��� is called the Möbius representation of � . In game theory, this corre-
sponds to the dividends of a game. As we will see in the sequel, these
are the coefficients of the decomposition of a game w.r.t. the unanimity
games. In Dempster-Shafer theory of evidence, this corresponds also
to the basic probability mass assignment [30].

interaction representation: it has been proposed by Grabisch [8], and is de-
fined for any set function � by:

� � �1�-� �62 H� N��� �
��� !9� ! � � � �
��Z� ! �"! �U�
� H# N � �T!B�U� ���

C �$�%$'&@�"���T<>� ' ��	 (6)

This complicated definition extends in fact the Shapley value ()� [31]
and the interaction index

� E+* for a pair of elements ,��.- in � , introduced
by Murofushi and Soneda [25]. They are defined by

( � �/,T� �62 H
� N����E ���@!

� ! �U�
� � ��0�
1 �7�1��&2�3,�� � !9�7�1�-��45�T<�,65�� (7)
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� E * �62 H
� N����O E P * S ���@!

� ! �[� � � ���� ! �U�
� 1 �7�1� & � ,;� - �U��! �$�5�6& � ,�� ��! �7�1�6& �
- � � ! �7�1�-��45�
(8)

It is easy to see that
� � ��� ,�� ��2 (����/,T� and

� ���	� ,;� - �U�82 � E+* .

Since formula (6) is invertible (see below),
� � is indeed a representation

of � , and it is often referred as the interaction index.
The interaction index has a natural interpretation in the framework of
cooperative game theory and multicriteria decision making (see the
companion paper in this book for more detail on this). It has been
axiomatized by Grabisch and Roubens [18].

Banzhaf interaction representation: proposed by Roubens [29] in order to
extend the Banzhaf value [1], in a way similar as above. It is defined
by: � �1� � �R2 �� � �)� H� N  � �

H# N � �T!B�U� ���
C �7� $'&@�"���T<>� ' ��	 (9)

co-Möbius representation: for any set function � , it is defined by

�� � �5�-� �62 H��� �� �
�T!B� � � ��� �7�Z�"�82 H� N � �T!B� � � �$�1��� �"���T<>� ' ��	 (10)

It will be seen below that
�� � corresponds to the commonality function

of Shafer [30]. The analogy with the Möbius transform can be noticed.

In the sequel, we will show how tight are the links between all these
representations.

3 Pseudo-Boolean functions and their extensions
This section relies essentially on [16].

3.1 Definition
Any function � ���	������� � ! # is a said to be a pseudo-Boolean function.
By making the usual bijection between �	� �
��� � and �����9� , it is clear that
pseudo-Boolean functions on �
������� � coincide with real-valued set functions
on � . More specifically, if we define for any subset � ' � the vector�3�92 1 �T��� � A����� �T��� � � 4 in �
������� � by �T��� � E 2 � if , 5 � , and 0 otherwise, then
for any set function � we can define its associated pseudo-Boolean function
� by

���T�3�$� �62 �7�1�-���=<>� ' ���
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and reciprocally. It has been shown by Hammer and Rudeanu [20] that any
pseudo-Boolean function can be written in a multilinear form:

�����$� 2 H� N� � ���"� �E�Y � � E � <�� 5 �	� �
� � � 	 (11)

It is easy to see that the coefficients � ���"� coincide with the Möbius transform
of the corresponding � (compare (5) and (11)). The monomials � E�Y � � E are
particular pseudo-Boolean functions, whose corresponding set functions are
called unanimity games in game theory, denoted by � � . They are character-
ized by the property � � �5�-��2 � iff ��� � , and � � �5�-��2 � otherwise. In
terms of game theory, equation (11) gives the decomposition of a game on
the basis of unanimity games.

Note that (11) can be put in an equivalent form, which is

�����$� 2 H� N� � ���"�
	E�Y � � E � <�� 5 �	� �
� � � 	 (12)

3.2 Derivative of a pseudo-Boolean function
It is useful to introduce the concept of derivative of a pseudo-Boolean func-
tion � . The (first) derivative of � w.r.t. , at point � 2 1 � A ���� � � 4 is defined
by�
E �����7�/�62 ����� A ��	
	�	
�� E � A ���[��� E W A ��	
	
	��� � ��! ����� A �
	�	
	���� E � A � ����� E W A �
	
	�	��� � ��	

(13)
Note that

�
E � depends no more on � E . More generally, the ( � th) derivative

w.r.t � ' � , ���2 �
(or � -derivative) at point � is defined recursively by:�

� �����7�/�R2 � E � � � ��E �����$� � (14)

for any ,25 � , and

�
I � 2 � . This definition is unambiguous, and

�
� �

depends no more on the variables contained in � . It is easy to show that�
� ���� � �-2 H� N � �!B� � ����� �7��� &@�"��� <>� ' � � <$� ' � �/��	 (15)

Hence we obtain immediately that the interaction indices have a simple ex-
pression in terms of � -derivatives:

� �5�-� 2 �� ! �"! � H� N �� �

� � ! ���� �
A �

� ���T� � �
� �5�-� 2 �� � � � H� N��� �

�
� ���T� � ��	
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We can also easily show that

� � �1�-� 2
�
� ��� �  ��� � �1�-� 2

�
� ����  ��	

where �  �62 1 � ���� ��4 , and �  2 1 � ��� � 4 .
3.3 Extension of a pseudo-Boolean function
An extension of a pseudo-Boolean function � is any function � defined on the
whole hypercube

1 � �
� 4 � such that �7���$�B2 �����7� on the vertices. An obvious
way to do this is to extend expressions (11) and (12) to the whole hypercube.
The first one is called the multilinear extension, while the second is the Lovász
extension.

The multilinear extension of � , given by4
� ���7�/�R2 H� N� � ���"� �E�Y � � E � <�� 5 1 ���
� 4 � � (16)

is the only multilinear function which extends � , hence its name (see Owen
[26]). It performs the classical linear interpolation of � in

1 � �
� 4 � .
It can be verified that the � -derivative of

4
� in the classical sense is the

multilinear extension of

�
� � . The following result can be shown.

Proposition 1 Let � be a set function and
4
� its multilinear extension. Then, for

all � ' � ,

(i)
� �5�-�-2

�
�
4
�
� � �� �  �

(ii)
� �5�-�-2 � A�

�
�
4
�����  ��� �

(iii)
� �5�-�-2 ��� � P A��
	���

�
�
4
�����$��� �

where �  �62 1 � � ��� � 4 for any real number � .

Comparing formula (iii) with (9), we see that the Banzhaf interaction index
is the average of the � -derivative of the pseudo-Boolean function, and of its
multilinear extension too. The Shapley interaction index is by contrast the
average along the main diagonal only.

The Lovász extension of � [21, 32] is given by�� ���7�/�R2 H� N� � ���"�
	E�Y � � E � <�� 5 1 ���
� 4 � 	 (17)

Defining the simplex ��� 2 � � 5 1 ����� 4 ��� � ��� A�� . ���� . � ��� � � � , the Lovász
extension is the unique affine function which interpolates � between the
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� ! � vertices of � � . By contrast, the multilinear extension interpolates be-
tween all vertices.

As above, its derivative coincides with the Lovász extension of

�
� � .

The following can be shown.

Proposition 2 Let � be a set function and
�� its Lovász extension. Then, for all� ' � ,

� �5�-� 2 � � � P A��
	
�
�
������7��� � 	 (18)

4 Conversion formulas between various
representations

We give in this section all conversion formulas between � , �� , � ,
�

and
�

(superscript � is omitted). We begin with the most usual ones.
We consider first the Möbius and Shapley interaction representations.

Table 1 gives all formulas for conversion between � , � and
�
. Conversion

� � �
��������	 ������� H
��� ������� H
���� ���


 �� ���
 � �������
��������	 H
��� ���������! �"�������� ������� H
�#� $ "% &� �������
��������	 H
����

�����'� �! &"�)(*�,+�-.���0/21  ��"% ��43
�����5� H
�#�

�6 �,+�-.� ������� �����7�

Table 1: Table of conversion between � , � and
�

formulas between � and � have already been given at the beginning of the
paper. Remark that contrary to (6), the expression of

�
w.r.t. � uses only one

summation: in fact every �$���"� is used exactly once.
It is remarkable that the expression of

�
w.r.t � is so simple, compared

to (6). In fact, originally,
�

was defined first in terms of � , as a remaining
term in an approximation problem. Then its expression in terms of � was
found, which happened to be a generalization of ( �/,T� and

� E+* (see [8]). The
inverse relation (of � in terms of

�
) interestingly leads to the introduction of

the Bernoulli numbers
) C

, defined by:

) C �62(!
C
�
A

H � F �
) �� !98 ! �

� � 8 � �;�;: ��� (19)

and
) � 2 � . First numbers of the sequence are

) A 2(!B�0<[� , )>= 23�0<@? ,
)>A 2 � ,)CB 2 !B�0<�D � ,

)>E 2 � , etc. Despite the erratic behaviour of this sequence, it
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has remarkable properties. In particular,
) = C W A 2 � for all � : � . The

numbers
� �C are defined from the Bernoulli numbers by

� �C �62 C
H* F �

� �
- � ) � � * � �7�!8M2 ���
�������
	
	�	 (20)

First values of
� �C are

� ��8 � � � D �
� � ! A= A� � ! AA �� A= ! AA A� ! AA �� A� ! A� =A E
D � ! AA �� ! AA �

This table has a property similar to the Pascal triangle, i.e. one coefficient� � W AC W A is the sum of the two above
� �C � � � W AC . For other properties, see [10].

Except the conversion from
�

to % , these relations have been proven in
the original paper [11] in a cumbersome way. More elegant proofs have
been provided by Denneberg in [7], and by Marichal in [16], the latter using
multilinear extensions of pseudo-Boolean functions.

We turn to the conversion between � , � and the Banzhaf interaction,
which are more straightforward to obtain, especially using a matrix formal-
ism (see Roubens [29]). Formulas are shown in table 2.

� �� ���7��	 �� 1  �� H
���� �����'���  �"%������� H
 #�
�� "% �� �������

�
��������	 H
����

�� " �����'� "� �� � ���5�
��������	 H
�#�

� � ���� "% �� � �����
Table 2: Tables of conversion between � , � and

�

We introduce now the co-Möbius representation
�� . Table 3 shows the

relations with other representations. For the expression of
�� in terms of

�
,

the following is equivalent [10]:

�� 2 H� � �
� �.�)��.�)�

� ���"��	
It is interesting to see that

�� �5�-� is the sum of the Möbius coefficients for all
supersets of � . Compared to �7�1� � , which is the sum over all subsets of � ,
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� � � �
�� �����7	 H
�#����! �����'� 1  �" �����5� H
�#� ������� H
�#� �����'� "% &� $ "% �� �����5� H
�#�

�� "% &� � �����
��

��������	 H
 �����  �����'� " ��������
������� 	 H
�#� �����'� "� �� �� �����
������� 	 H
 #�

�����'� "% &�6 � + - � ��;�����
� ������	 H
�#�

� � �� � "� �� ��������

Table 3: Tables of conversion between
�� and other representations

we see that
�� is a kind of “complement” of � . In the case of fuzzy measures,

this means that
�� is anti-monotonic, and vanishes on the whole set, hence

the term co-measure which has been employed in [10]. On the other hand,
in evidence theory,

�� is known as the commonality function, which has many
interesting properties. Compare also the expressions for

�
and

�
in terms of

� and
�� .

Lastly, we give the conversion formulæ between
�

and
�

in table 4. They
can be obtained through the multilinear extension [16].

� �
� �1� �-2 � �1�-� H��� �

� ! �!B� � �.�)��Z� ! � ! � �� �.� � W A � �Z�"�
� �1� �-2 H��� �

� �� �.� ��� A ! � � ) �.�)� � ���"� � �1�-�
Table 4: Table of conversion between

�
and

�

5 Transformations and matrices
As we explained, the formulas of section 4 can be obtained directly (but te-
diously!) from the definitions and elementary calculus over subsets, or in
a more sophisticated way, using extensions of pseudo-Boolean functions.
There are still two other ways (in fact essentially equivalent), which en-
lighten the deep structure underlying these representations. We present
them briefly (see [7, 16] for more details).

The first way is to adopt the formalism of transformations and operators,
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used in combinatorics (see Berge [2]). An operator is a two-place set function� � ����� ��� �����9��!$# . The multiplication � between operators and set
functions is defined as follows, for every

& � ) ��� ' �
� � ��� �
� & � ) � �62 H� N� � � & �	�B�
� ��� � ) �7�
� � ��� ��� & � �62 H� N� � � & �	�B� �7���B�>�
������ �
� ) � �62 H� N� �$���B�
� ��� � ) �>	

The Kronecker’s delta �
� & � ) �/�62 � � if

& 2 )
� else

is the unique neutral element from the left and from the right. If it exists, the
inverse of

�
is denoted

� �
A
, satisfying

� � � �
A 2

�
,
� �
A � � 2

�
.

It can be shown that the family
� �R2 � � � ����� ���@�����9�-# � � � & � & � 2(�7< & ' ��� � � & � ) � 2 � if

& �'*) �
of functions of two variables together with the operation � forms a group,
and the inverse

� �
A
5 � of

� 5 � computes recursively through
� �
A � & � & � 2 ���

� �
A � & � ) � 2 ! H� N ��� ����

� �
A � & �	�B� � ��� � ) � if

& ' �2 ) 	
The Zeta operator � � & � ) � , defined by

� � & � ) � �62 � � if
&3'0)

� else

and its inverse the Möbius operator correspond to our previous definitions,
i.e. with former notations,

� 2 ���� �
A � � 2 ����� 	 (21)

The next fundamental operator to introduce is the so-called inverse Bernoulli
operator � :

� � & � ) � �R2 � A
V � � � V W A if

&('0)
� else

	
The interaction representation is recovered by

� 2���� � 	 (22)

10



We turn now to a special class of operators, satisfying
� � & � ) � 2 � � � � ) � & � for

&3'0) � (23)

i.e. they can be represented by an ordinary set function � � & � �62 � � � � & � ,
denoted with the corresponding small greek letter. In fact, the set of such
operations forms an Abelian group, as well as the corresponding set of set
functions: � �R2 ��� � ����� �-# � �/� � � 23���
with operation � defined by

� ��� � & � �R2 H� N � �/���B���"� & � �B��� &(' ��	
The neutral element � of

�
is

� � & �/�62 � � if
& 2 �

� else �
and the inverse of � is denoted ��� �

A
. Since � and � have property (23), we

can introduce the corresponding Zeta function and Bernoulli function:
	 � & � 2(� for all

& 5@� �

 � & � 2 �� & � ! � � & 5@� 	

If moreover � is a function only of the cardinal of sets, then we call it a
cardinality function, and the corresponding

�
a cardinality operator. Note that� and � have also this property.

There is a general formula for the inverse of cardinality operators (which
is also cardinal). More specifically, if �/� & � 2 ��� � & � � , then ��� �

A � & � 2 ��� �
A � � & � � ,

with ��� �
A

defined recursively by

� � �
A � � � �R2 �-�

� � �
A �/��� �R2 !  �

A
HC F �

� � � � ���/� ! ��� � � � A �5���7� � 5 	 (24)

With this formula, we get
	 � �
A

the Möbius function, and 
 � �
A

the Bernoulli
function, giving rise to the Bernoulli numbers.

Coming back to the interaction representation, we have
� 2 ��� � 2 ��� �Z� ��� �

A ���
which can be rearranged to obtain

� 2*� ��� . � is called the interaction operator,
and is not in the group

�
.
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The second way is to use matrices instead of operators. Considering the
set of all subsets of � , one can consider a set function on � as a vector in�����9� (i.e. with � � lines), and operators

� � & � ) � as squared matrices of � �
rows and columns. Thus, the multiplication � is now the vector/matrix or
the matrix/matrix product. If a suitable order is chosen for the subsets of� , then the matrices corresponding to the above cited operators have a very
interesting structure. Let us consider the following order:� � � � � ����� �U� ��� � �[�;����� � D �[� � �K�!D�� � � ���!D�� � �[������� D �[� � � ���
	
	�	T� � 	
Then most of the operators above have a corresponding matrix which is
called fractal, because the whole matrix can be reconstructed from an ele-
mentary cell, as follows� � A�� �62 � � A � =

� A � B�� � � E 5 �0,�2 �[�;� � D�� �� � C � �62 � � A � � C � A�� � = � � C � A��� A � � C � A�� � B � � C � A�� � 	
This is the case for all transformations between � , � ,

�� and
�

.
A second type of matrix is the so-called upper-cardinality transformation,

which corresponds to the cardinality operators above. The general form of
these matrix is given below.

�� ���� � �� �
	 � ���� �� �
	 � �� � 	 � �� �
	 � 	 � �
...

� � ��� � � � � �	 � � ��� � � �
	 � � � � 	 � � � �
	 � 	 � � �����������������
��� �� �� ��� ��� ��� ��� ������ �� ��� ������ �� �� ���� � � ���� ��� �� ������ ��� � � �� �

�������������
and in fact is completely defined by the sequence � � ��� A �
	�	
	���� � . This se-

quence corresponds to the function � above. If � C is such that � C 2! C for
any � , then it is also a fractal matrix. All transformations between � ,

�� ,
�

and
�

are upper-cardinal, of which sequences are given in table 5. A third
type of matrix is the lower-cardinality matrix, which is just the transpose of
an upper-cardinality matrix.

This formalism gives an elegant and quick way of computing the trans-
formations.
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� �� � �
� ��� � � ��
	�� � �  �
	 ��������� 	 �
	 ��� 	 �
	 � / � �� 3 	
�� � 	 ��� � � � � ��
	�� � �  � 	 ��������� 	 � 	 � 	 � / �� 3 	
� �
	 � ���� � �
	 � ������� 	��� �

��� � � �� 	�� � �  �
	 � � � ������� 	
� ��� ����� 	 � �

� �
	 � / �� 3 	 �
	 � / � �� 3 	 �
	 ��� �
� 	  � �!���"� 	 ��� � � ��
	�� � � 

Table 5: Cardinality sequences for equivalent representations between � ,
�� ,�

, and
�

6 Main properties of the representations
We give here essential properties of the different representations. Proofs and
other details can be found in [7, 11, 24].

We begin by properties involving the conjugate set function.

Property 1 For any set function � and its conjugate
4� , we have

���#� �1�-� 2 �T!B�U� � W A � � �5�-���=<M� ' �������2 �
(25)

��#� �1�-� 2 �T!B�U� � W A H� � � � � �Z�"���,<M� ' �������2 � 	 (26)

Equation (25) is obtained directly from (10) as follows:

��$#� �1�-� 2 H� N � �T!B�U���
4�$���":��

2 H� N � �T!B�U� � �Z�7��� �8!9�7�Z�"� �
2 ! H� N � �T!B� �	�1�7�Z� �-2 �!B� � �TW

A
� � �1�-��	

Equation (26) has been proven in [11] with a lengthy proof. As indicated by
Roubens, the result is immediate from (25) since it implies

� #� �1� �-2 �!B� � �TW A �� � �1�-� 2 �T!B�U� � W A H� � � � � �Z�"��	
Property 2 For any set function � and its conjugate

4� , we have
� #� � � � 2 �7���9��! � � � � �� #� �5�-� 2 ! �!B� ��� � � �1� ��� <>� ' � ��� �2 � 	
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The two following properties concern the bounds of the interaction and
Möbius representations.

Property 3 Let % be a fuzzy measure with %-�1� � 2=� . Then the interaction index� E+* ranges in
1 !B�[� ! � 4 . � E+* 2 � if and only if % 2 � O E P * S , the unanimity game for

the pair ,��.- . Similarly,
� E+* 2=!B� if and only if % 2 4� O E P * S , the dual measure of the

unanimity game for the pair ,;�.- .

Property 4 Let � ' � . Then the upper bound � �1� � of � �1�-� , � �1� � , and
� �1� �

taken over all fuzzy measures with %-�1� � 2 � is the same for all three representa-
tions, and is given by

� �1�-�-2 � H* F � � �- � �T!B�U� * 23�T!B�U� �  � � !0�8 � � � (27)

with 8 � defined as follows

(i) 8 � 2
�
� if ��� � ������� � �

(ii) 8 � 2
� !0�� if ��� ��������� � �

(iii) 8 � 2
�
� ! � if �	� ���
����� ���

(iv) 8 � 2
� !9D� or 8 � 2

�"! �� if �	� D ������� ��� .
Moreover, the bounds are reached by the fuzzy measure

�% defined by, for any � �2 �
:

�% � �Z�"�-2
� ��� if

� � � ? 8 �� � if
� � �� 8 �

Similarly, the lower bound �"�1�-� is given by the same expression, but with a differ-
ent definition of 8 � :

(i) 8 � 2
�
� ! � if �	� � �
����� ���

(ii) 8 � 2
� !9D� or 8 � 2

�"! �� if �	� � ������� ���
(iii) 8 � 2

�
� if ��� � ������� � �

(iv) 8 � 2
� !0�� if ��� D ������� � � .

14



Note that the bounds are the same for �9� � , and
�

.
The three following properties concern monotonicity and bounds of the

set function. They ensure that a given set function, which is known only
through either � ,

�
, or

�
, is a fuzzy measure, i.e. monotonic with respect

to inclusion, vanishing on the empty set, and being 1 on the whole set. The
first result is due to Chateauneuf and Jaffray [3], the second one to Grabisch
[11], and the third one to Roubens [17].

Property 5 A set of � � coefficients � �5�-� , � ' � corresponds to the Möbius rep-
resentation of a fuzzy measure if and only if

(i) � � � �-2 � , � � N  � �1�-�-23� ,
(ii) � E�Y � N � � �Z�"� ? � , for all � ' � , for all ,65 � .

Property 6 A set of � � coefficients
� �1� � , � ' � corresponds to the (Shapley)

interaction representation of a fuzzy measure if and only if

(i) H
� N 

)
�
� �1�-�-2 � ,

(ii) HEZY  � �	� ,��U�-23� ,
(iii) H

� N �� E � V � VV ��� � V � �1� &2� ,��U� ? � , < ,65 � , <$� ' � � � ,�� .

Property 7 A set of � � coefficients
� �1�-� , � ' � corresponds to the (Banzhaf)

interaction representation of a fuzzy measure if and only if

(i) H
� N 

� ! �� � � � �1�-�-2 � ,

(ii) H
� N 

� �� � � � �1�-�-2 � ,
(iii) H

� N �� E
� �� � � �!B� ������� � �1� &2� ,��U� ? � , < ,05�� , <$� ' � � � ,�� .

Lastly, we give some properties linked with � -monotonicity.

Property 8 If % is a � -monotone fuzzy measure for a given � ? � (resp. � -
alternating, � �2 � ), then for each � ' � with � . � , � �5�-� ? � (resp. . �
for � even, and ? � for � odd).

Property 9 A fuzzy measure is totally monotone if and only if � �1�-� ? � for any� ' � . If a fuzzy measure is � -monotone, then � �1�-� ? � for any � such that� . � .*� .
15



This result is due to Chateauneuf and Jaffray [3], while the first assertion is
well known (see e.g. Shafer [30]).

Property 10 Let % be a fuzzy measure with %-�1� �B2 � . If % is � -monotone for a
given �@? � , then � �5�-�/. ��� <>� ' ��� � . � ! ��	
Similarly, if % is � -alternating, � �23� , then for all � ' � , � . � ! � ,

� �5�-� . ��� if � odd � � �1�-�/? !B�[� if � even 	
7 The Choquet integral
So far, we have been concerned mainly with set functions and sometimes
with fuzzy measures. Going back to the measure-theoretic point of view
for a while, we could deal with integration with respect to a fuzzy mea-
sure. The Choquet integral [4] extends the classical Lebesgue integral for
non-classical measures, such as fuzzy measures. As we deal with the finite
case, we give its definition only in this framework, avoiding a thorough de-
velopment, which can be found in this book in the papers of Denneberg,
and Murofushi and Sugeno. We will see however that we can in fact remain
in the framework of pseudo-Boolean functions, without referring to fuzzy
measure theory.

Definition 1 Let � be a positive real-valued function on � , and � a set function.
Let us denote ���/,T� by � E , for every , in � . Then the Choquet integral of � with
respect to � is given by

�

� � �>� �R2
�H E F A 1 � � E � ! � � E � A�� 4 �7� & � E � ��� (28)

where
� � E � indicates a permutation on � so that � � A�� . � � = � . ���� . � � � � , and& � E � �62 ���/,T����	
	
	
���Z� �
� . Also � � � � �R2 � .

For real-valued functions, the definition is extended as follows:
�

� � �>�/�62 �

� � �7W-�8! �

#� � � � ��� (29)

where � W � � � are the positive and negative parts of � , such that � 2 � W ! � � .
It is interesting to express the Choquet integral under the various repre-

sentations of � . The result concerning � has been shown to hold by Chateau-
neuf and Jaffray [3] (also by Walley [33]), extending Dempster [5], the result
concerning

�
and

�� has been proven by Roubens [17], while Grabisch [9]
proved the one concerning

�
.
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Property 11 Let � be a set function, � � �� � � � � their Möbius, co-Möbius and in-
teraction representations, and � a positive real-valued function on � . Then the
Choquet integral of � w.r.t. � is expressed by:

�

� � �>� 2 H
� N� � �5�-� 	E�Y � � E (30)

�

� � �>� 2 H
� N� P � JF I �T!B�U� � W

A �� �1�-� �
E�Y � � E (31)

�

� � �>� 2 H
� N�

�
H��� �
)
�.� �

� W �Z�"��� 	E�Y � � E !
H

� N� P � JF I �T!B�U� � W
A �
H��� �

� �.�)��.�)�
� � �Z�"��� �

E�Y � � E (32)

�

� � �>� 2 H
� N�

�
H��� �

� ! �� � �.� � � W �Z�"��� 	E�Y � � E !
H

� N� P � JF I �T!B�U� � W
A �
H��� �

� �� � �.� � � � �Z� � � �
E�Y � � E (33)

(34)

with
� W indicating a restriction so that only terms with positive interaction are

taken into account, and similarly for
� � ,

� W and
� � .

Looking at the expression of the Choquet integral w.r.t the Möbius trans-
form, we recognize the Lovász extension of � . This establish the link with
pseudo-Boolean functions. It can be seen also as an extension of fuzzy mea-
sures (or set functions) to fuzzy sets (which are defined by a membership
function).

8 � -additive measures
� -order additive measures or � -additive measures for short have been intro-
duced by Grabisch in an attempt to decrease the exponential complexity of
fuzzy measures in practical applications, since a fuzzy measure defined on
a set of � elements requires � � real coefficients for its definition. A means
which has been often used for this is to introduce the property of decompos-
ability: a fuzzy measure % is decomposable if the measure of any subset can
be expressed as a function of the measures of each element in the set. Thus
we need only to define the distribution of % over � , hence � coefficients in-
stead of � � . The most usual example in this category are additive measures.
But it appears that this is too drastic a simplification, which is too limitative,
especially in multiattribute decision making. One can think of a distribu-
tion defined not only for singletons, but also for pairs. Nevertheless, how to
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define properly the measure of triples, etc. only with the help of the distri-
bution?

The answer to this question was given (again!) by looking at pseudo-
Boolean functions, and especially their multilinear form (11). An additive
measure (defined by a distribution on singletons) has a linear expression
�����7� 2 � E � E � E , and the coefficients � E ’s (i.e. the Möbius transform) are
indeed the distribution itself. Then a fuzzy measure of which the multilinear
extension is limited to a degree 2, (or 3, etc.) can be expressed only by a
distribution on singletons and pairs (or also on triples, etc.). Equation (11)
will then provide the value of % for evey subset.

Definition 2 A fuzzy measure % is said to be � -additive if its Möbius transform
satisfies � �5�-�-2 � for any � such that � : � , and there exists at least one subset �
of � of exactly � elements such that � �1�-� �2 � .

The following property of � -additive measures is fundamental.

Property 12 Let % be a � -additive measure on � . Then

(i)
� �5�-�-2 �� �1�-� 2 � for every � ' � such that

� � � :*� ,
(ii)

� �5�-�-2 � �5�-�-2 � �1� �-2 �%-�1� � for every � ' � such that
� � � 2 � ,

(iii) if % is a 2-additive measure,
� �1� � 2 � �1� � for every � ' � .

Thus, � -additive measures can be represented by a limited set of coefficients,
either � �1� � , � � � . � , or

� �1� � , � � � . � , or equivalently
�%-�1�-��� � �1� � , � � � . � i.e.

at most �
CEGF A / � E 3 coefficients.

Of course, we can think of extending the definition to any set function.
A � -additive set function (although the term seems to be improper) has a
multilinear expression of degree � .

As said in the introduction, the concept of � -additivity in a sense gen-
eralizes the concept of decomposability, but only for the case where de-
composability is understood as additivity. It is then tempting to define � -
decomposability in a similar way. This amounts to redefine the Möbius trans-
form in an adequate way. Using pseudo-addition operations for the de-
composability, Mesiar [23] has proposed what he called � -order pan-additive
measures. Based on this and on works of Marichal et al. [22], Grabisch has
completed the picture by giving the corresponding Shapley interaction in-
dex [12]. It is interesting here to focus on the case of the maximum operator
for the pseudo-addition, the only case which is really problematic. As a
fuzzy measure which is decomposable w.r.t the maximum operator is called
a possibility measure, it is natural here to speak of � -possibility measures. We
sketch briefly the definition and main properties of them (see [12] for more
details).
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For any fuzzy measure % , its � -Möbius transform is defined by

���� � & �/�R2 �
� ���� ��� � � even

%-� ) ��! � �
� ���� �	� � � odd

%-� ) ��	 (35)

where the residuated difference ! � is defined by� ! ��
 �R2 � � � if � : 

� � otherwise.

Note that this Möbius transform assumes only positive values.
A � -possibility measure, denoted

C�
, is any fuzzy measure such that its� -Möbius transform vanishes for subsets of more than � elements. It can be

shown that a simple expression of � -possibility measures isC � � & � 2 �
� N � P V � V F���� � � V � V P C �

C � � ) ��	 (36)

Observe that if
� & � ? � , then

C � � & � is obtained as the supremum over all
)

of � elements included in
&

. If
� & � � � , then we get simply

C � � & � . Thus, as
in the additive case,

C �
is determined by the value of the set function over

all subsets of at most � elements.
We can define � -necessity measures by duality, i.e.C� � & � 23� ! C � � & :;� 2 	� Y ��� P V � V F���� � � V � V P C � �T� !

C � � ) ���	 (37)

We can show the following properties.

Proposition 3 Let
C�

be a � -possibility measure. The following properties hold.

(i)
C � � & & ) �/? C � � & � � C � � ) � , for any

& � ) '��
(ii)
C �

is a submodular measure, i.e.C � � & & ) � ! C � � &���) �/. C � � & � ! C � � ) ��	
Dual properties on

C �
can be obtained as well.

9 Approximation of set functions and fuzzy
measures

The section on � -additive measures suggests the following question, which
can be asked for set functions as well.
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Since � -additive measures are much simpler to manipulate, one can
think of replacing a given fuzzy measure by a � -additive one, such that
a loss of information as low as possible. How to choose the best (in some
sense) � -additive measure? How good is the approximation?

Obviously, the greater � , the better the approximation, but the quality should
depend also on the type of fuzzy measure.

In [19], Hammer and Holzman have addressed this question, consider-
ing a squared error criterion computed over all the vertices of the hypercube1 ���
� 4 � . For a given pseudo-Boolean function � , let us consider its best � th
approximation � � C � , which minimizes the following criterion:

H
� Y O � P A S 	 1 �����7��! � C ���$��4 = (38)

among all multilinear polynomials of degree at most � . They proved that the
best approximation is given by the unique solution � � � C � �Z�"� � � ' � � � � � .0���
of the triangular linear system:

�� � H
� Y O � P A�S 	

�
� � � C � ���$� 2 �� � H

� Y O � P A S 	
�
� �����$���=<>� ' ��� � . �7	

They solved the system for �@2 � and �@2,� . In [16], the general solution is
given:� � C � �1�-�-2 � �1�-� ! �!B� � C � � H

�����

���
	

� � ! � !0�� ! � � �� �.� � � ���"��� <M� ' ��� � . �7	 (39)

For � 23� , the solution reduces to:� � A�� � � � 2 H� N  ! ��� !0� �� � � ���"� (40)� � A�� �	� ,��U� 2 H��� E �� �.� A � ���"��� <�, 5 ��� (41)

and for � 2 � : � � = � � � � 2 H� N� �Z� !0� ������! ���� �ZW A � �Z�"� (42)� � = � ���3,��U� 2 H �� E ! ��� ! �[�� �.� A � ���"���,<�, 5 � (43)� � = � ���3,��.- �U� 2 H��� E P * �� �.� = � ���"��� < ,��.- 5 ��	 (44)
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Observe that for � 2,� , we see that
� ���3,�� � is the solution for � � A�� ���3,��U� , while

for � 2 � , � ���3,;� - �U� is solution for � � = � ��� ,;�.- � � . This shows the close relation
of the Banzhaf interaction with this kind of approximation.

When � 2 � , it has been shown that one can recover the Shapley index
as well, if the criterion is a weighted one:

minimize H
� N� P � JF 

�/ � � =���
A 3

1 ���T��� ��! � � A�� �T�3�$�.4 = 	 (45)

Another way to consider the approximation problem is to consider up-
per and lower envelopes, which has a probabilistic flavour. We consider
here only fuzzy measures, and for a given fuzzy measure % and a given � ,
we want to obtain the set of � -additive measures which dominate % (upper
approximation), or are dominated by % (lower approximation). A measure

� dominates a measure % if for all
&(' � , we have always � � & �/?0%-� & � .

This problem has been addressed in [13, 15], and we give here the main
result, which generalizes a result of Chateauneuf and Jaffray [3] obtained for� 23� (probability measure).

Theorem 1 Let % be a fuzzy measure on � , � its Möbius transform, and sup-
pose that % �

is a � -additive measure which dominates % , �9. � . �9! � . Then
necessarily, the Möbius transform � �

of % �
can be put under the following form:

� � � & � 2 H� � � JF I
� � ) � & �	� � ) ���T< & 5

C ���1� ��� (46)

where
C ����� � denotes the power set limited to subsets of at most � elements. More-

over, the weight function
� �[����� ��� C ���1� � !$# is such that

H� V � � � JF I
� � ) � & � 2 �[�T< ) ' � � (47)

� � ) � & � 2 ���T< & � & � ) 2 � 	 (48)

The theorem gives only a necessary condition, thus any � -additive measure
built by this process is not necessarily a dominating measure (anyway, not
all fuzzy measures can be dominated by a � -additive measure). When � 2 � ,
it is known that, if the fuzzy measure can be dominated (e.g. in the case of
convex fuzzy measures), the Shapley value is a dominating additive mea-
sure, and moreover, it is the center of gravity of the convex set of dominating
additive measures.
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of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und Ver-
wandte Gebiete, 2:340–368, 1964.

23



[29] M. Roubens. Interaction between criteria and definition of weights in
MCDA problems. In 44th Meeting of the European Working Group ”Mul-
ticriteria Aid for Decisions”, Brussels, Belgium, October 1996.

[30] G. Shafer. A Mathematical Theory of Evidence. Princeton Univ. Press,
1976.

[31] L.S. Shapley. A value for � -person games. In H.W. Kuhn and A.W.
Tucker, editors, Contributions to the Theory of Games, Vol. II, number 28
in Annals of Mathematics Studies, pages 307–317. Princeton University
Press, 1953.

[32] I. Singer. Extensions of functions of 0-1 variables and applications to
combinatorial optimization. Numerical Functional Analysis and Opti-
mization, 7(1):23–62, 1984.

[33] P. Walley. Coherent lower (and upper) probabilities. Technical Re-
port 22, University of Warvick, Coventry, 1981.

[34] Z. Wang and G.J. Klir. Fuzzy measure theory. Plenum, 1992.

24


