
A New Algorithm for Identifying Fuzzy Measures and Its
Application to Pattern Recognition

Michel GRABISCH
Thomson-CSF, Central Research Laboratory

Domaine de Corbeville, Orsay, France
email grabisch@thomson-lcr.fr

Abstract

We present a new algorithm for identifying fuzzy mea-
sures, which is a kind of gradient algorithm with con-
straints. Its performance is superior to the one of previ-
ous attempts, and we show its efficiency into a problem of
pattern recognition using Choquet integral.

1 Motivations

Since Sugeno proposed the concept of fuzzy measure
and fuzzy integral in 1974, the theory has been well de-
veloped, in the fuzzy community (essentially by Weber,
Wang, Murofushi, De Campos) as well as in utility theory,
where fuzzy measures are called non-additive measures
(essentially the works of Schmeidler, Gilboa, Quiggin)
and other fields of decision theory, as game theory (Shap-
ley and Aumann). Some recent books give an overview
of the subject under these different points of view, as the
one of Wang and Klir [12] (the Sugeno integral), Sugeno
and Murofushi [11] (general), Nguyen et al. [9] (decision
theory), Quiggin [10] (utility theory), and Denneberg [1]
(mathematics).

As remarked by the author [4], most real applications of
fuzzy measures deal with multicriteria decision problems,
where fuzzy measures are defined on the (finite) set of
criteria or attributes, and model the relative importance
of criteria as well as their interaction. Indeed, modeling
of interaction among criteria is precisely the main interest
of fuzzy measures and integrals (see e.g. [6] for a study
of the use of fuzzy measures and integrals in the field of
multicriteria decision making).

Despite the success of such techniques in real applica-
tions, the practical use of fuzzy measures could be diffi-
cult, because for a n criteria decision problem, one has
to identify 2n coefficients in order to define a fuzzy mea-
sure. This identification step is very important since all
the knowledge concerning the criteria is embedded into
the fuzzy measure. At this stage, several alternatives ex-
ist, which are described in [9]:

• use of an expert to assess the 2n coefficients, on the
basis of semantical considerations, which are issued
mainly from utility theory,

• use of standard optimization algorithms, as the
Lemke’s method, constrained least mean squares, etc

• a mix of the two above

Clearly, the first alternative is of practical use only for low
values of n. On the other hand, standard optimization al-
gorithms are rather greedy, and are not suitable to fuzzy
measures since they lead to sparse matrices of constraints.
This is due to the peculiar structure of the fuzzy measure
coefficients, which form a lattice. The third alternative
seems to be the best, but here again arises the problem of
a suitable optimization algorithm. In this paper, we pre-
cisely intend to solve this point, that is, to propose a new
algorithm for identifying fuzzy measures, which takes ad-
vantage of the lattice structure of the coefficients. In fact,
some attempts in this direction already exist, as the algo-
rithm of Mori and Murofushi [7, 9]. We will see that our
algorithm provides better performance.

The paper is organized as follows: section 2 gives nec-
essary definitions on fuzzy measures and integrals, illus-
trated with some properties. Section 3 describes the algo-
rithm together with its philosophy, section 4 reports some
experiments to compare with previous attempts, and sec-
tion 5 gives a complete application of the algorithm in the
field of pattern recognition. Finally, section 6 concludes
the paper.

2 Background on fuzzy measures
and integrals

We give now essential definitions, restricted to the finite
case as explained above. In all this paper, min and max
are denoted ∧,∨ respectively.

We consider a finite universe X = {x1, . . . , xn}.

Definition 1 A fuzzy measure µ defined on X is a set
function µ : P(X) −→ [0, 1] verifying the following ax-
ioms:

(i) µ(∅) = 0, µ(X) = 1.

(ii) A ⊆ B ⇒ µ(A) ≤ µ(B)

1



P(X) indicates the power set of X , i.e. the set of all
subsets of X .

Note that the usual additivity axiom for probability mea-
sures µ(A ∪ B) = µ(A) + µ(B), A ∩ B = ∅, has been
replaced by a weaker one: monotonicity. For this rea-
son, the definition of a fuzzy measure requires in general
2n coefficients, namely the measures of the 2n subsets of
X . Fuzzy measures include as particular cases probabil-
ity measures, possibility and necessity measures, belief
and plausibility functions, etc.

A convenient way of representing fuzzy measures in the
finite case is to use a lattice representation. All the 2n co-
efficients defining a fuzzy measure can be arranged in a
lattice with the usual ordering on real numbers, which is
in fact the same as the Boolean lattice of subsets of X , or-
dered with inclusion. Figure 1 gives an illustration when
n = 4 (for the sake of simplicity, µ23 denotes µ({x2, x3})
and similarly for all coefficients).

µ∅

µ1234

µ1 µ2 µ3 µ4

µ123 µ124 µ134 µ234

µ13 µ14 µ23 µ24µ12 µ34

Figure 1: Lattice of the coefficients of a fuzzy measure
(n = 4)

At this stage, we introduce some vocabulary about this
lattice, which will be used in the sequel. The lattice of
fuzzy measure is made from nodes related by links. The
lattice has n + 1 horizontal layers, numbered from 0 (for
the layer containing only µ∅) to n (for the layer containing
only µX ). A path is a set of chained links, starting from
the node µ∅ and arriving to the node uX (on figure 1, the
path passing through µ3, µ23, and µ234 is emphasized).
For a given node in layer l, its lower neighbors (resp. up-
per neighbors) are the set of nodes in the layer l−1 (resp.
l + 1) linked to it. There are l lower neighbors and n − l
upper neighbors.

We turn now to fuzzy integrals, that is, integrals of a
real function with respect to a fuzzy measure, by analogy
with Lebesgue integral which is defined with respect to an
ordinary (i.e. additive) measure. Sugeno has proposed the
following definition, restricted to functions on [0, 1]:

Definition 2 Let µ be a fuzzy measure on X . The dis-
crete Sugeno integral of a function f : X −→ [0, 1] with
respect to µ is defined by :

Sµ(f(x1), . . . , f(xn))
∆
=

n∨

i=1

(f(x(i)) ∧ µ(A(i))) (1)

where ·(i) indicates that the indices have been permuted
so that 0 ≤ f(x(1)) ≤ · · · ≤ f(x(n)) ≤ 1, and

A(i)
∆
={x(i), . . . , x(n)}.

Another definition is due originally to Choquet, and can
be applied to any positive function:

Definition 3 Let µ be a fuzzy measure on X . The discrete
Choquet integral of a function f : X −→ IR

+ with respect
to µ is defined by

Cµ(f(x1), . . . , f(xn))
∆
=

n∑

i=1

(f(x(i))−f(x(i−1)))µ(A(i))

(2)
with the same notations as above, and f(x(0)) = 0.

The definition can be extended to negative functions too
(see e.g. [1, 9]). The main advantage of Choquet inte-
gral is that it coincides with Lebesgue integral when the
measure is additive. More general definitions including
Sugeno and Choquet definitions exist, but will not be con-
sidered here, we refer the reader to [2, 8, 9]. In the sequel,
the use of Fµ in a formula will indicate that either Sµ or
Cµ can be used.

An important property of fuzzy integral which will be
used in the sequel is the following:

Property 1 The values of the Sugeno integral and the
Choquet integral on the 2n vertices of the hypercube
[0, 1]n give the 2n coefficients of the fuzzy measure µ:

Sµ(δ1, δ2, . . . , δn) = µ(
⋃

i|δi=1

{xi}), ∀(δ1, . . . , δn) ∈ {0, 1}n

Cµ(δ1, δ2, . . . , δn) = µ(
⋃

i|δi=1

{xi}), ∀(δ1, . . . , δn) ∈ {0, 1}n

i.e. for example Sµ(0, 1, 0, . . . , 0) = µ({x2}).

3 Description of the algorithm

Suppose we have a system S with n inputs variables and
one output we want to model under the form of a fuzzy
integral, that is

S(x) = Fµ(x) (3)

where x = [x1 · · ·xn] is the n-dimensional input vector,
and µ a fuzzy measure on the set X of input variables.
Looking at the notations of the previous paragraph, one
can see we have kept the same notation for variables in X

2



and values of variables, but this should cause no confu-
sion. Having a set of learning data (x, y) where y denotes
the output of the system when the input is x, the problem
is to find for a given fuzzy integral (Choquet, Sugeno, or
other) the best fuzzy measure µ so that an error criterion
such as the sum of squared errors between the model and
the system is minimized.

An analysis of the problem reveals the following:

• one of the major difficulty of the problem is that the
coefficients of the fuzzy measure must obey mono-
tonicity constraints, which can be put under a lattice
form.

• whatever the kind of integral is chosen, an input x
involves the use of all the coefficients situated on a
path from ∅ to X . The particular path used depends
only on the ordering of the values x1, . . . , xn (see
figure 1, where the path corresponding to a datum
such that x1 ≤ x4 ≤ x2 ≤ x3 is emphasized).

• if too few data are used, then it may be that some co-
efficients of the lattice are not used, so that they can-
not be modified by some gradient considerations. In
fact, it can be shown [5, 9] that at least n!/[(n/2)!]2

(for n even), or n!/([(n − 1)/2]![(n + 1)/2]!) (for n
odd) data are necessary to use all the coefficients.

• it is known that fuzzy integrals range between min
and max, that is our model is suitable for systems
such that for any input vector, x1 ∧ · · · ∧ xn ≤
S(x1, . . . , xn) ≤ x1∨· · ·∨xn. In the absence of any
learning data and any information, the only reason-
able solution seems to be to choose the average value
of the input 1/n

∑
i xi. This corresponds to a Cho-

quet integral with respect to a fuzzy measure which is
additive and equidistributed, i.e. µ({xi}) = 1/n, for
all i. In the lattice representation, this corresponds
to a state where every node in a layer l is equidistant
from any node of the layer l + 1 or l − 1. For this
reason, we call this the equilibrium state of the fuzzy
measure. It should be reasonable to get fuzzy mea-
sures as near as possible to this equilibrium state.

These considerations leads to an algorithm which is based
on two fundamental steps:

step 1: for a given datum x , we modify only the coeffi-
cients on the path involved by x in order to decrease
the error, as in a gradient descent algorithm. The
modification is done in order to preserve the mono-
tonicity property on the path. Also, monotonicity is
checked for neighboring nodes. This is done for all
the learning data, several times.

step 2: if there are too few learning data, then some
nodes may have been left unmodified. These nodes
are modified here in order to have the most equili-
brated lattice, i.e. distance from neighbors should be
as equal as possible.

The originality of our algorithm is more in step 2, since
Mori and Murofushi [7] have already proposed an heuris-
tic algorithm which is similar to our step 1. The main idea
behind step 2 is the following: in the absence of any in-
formation for some nodes, we should arrange them into
the lattice in order to get a lattice as homogeneous as pos-
sible. We expect by this to be robust when only few data
are available. Using the language of pattern recognition,
we could say that we expect better generalization ability,
or less overtraining.

We detail now the two steps:

step 0 : the fuzzy measure is initialized at the equilibrium
state.

step 1.1 : consider a learning datum (x, y). Compute
the model error e = Fµ(x) − y. Let us denote
u(0), u(1), . . . , u(n) the values of the nodes on the
path involved by x. For example, in figure 1, we
have u(1) = µ3, u(2) = µ23, u(3) = µ234. Note
that we have always u(0) = 0, u(n) = 1.

step 1.2 : we compute the new value unew(i) as follows:

unew(i) = uold(i)−α
e

emax
(x(n−i)−x(n−i−1)) (4)

α ∈ [0, 1] is a constant1, and emax is the maximum
value of the error. emax = 1 if y takes its values in
[0, 1]. As before, x(i) indicates the ith value of the xi

in ascending order.

step 1.3 : verify the monotonicity relations. If e > 0, the
verification is done for lower neighbors only, and if
e < 0, for upper neighbors only. Moreover, the ver-
ification is done only for nodes already modified in
previous steps. If a monotonicity relation is violated,
say with node µJ , J ⊂ X , then u(i) = µJ .

Repeat steps 1.2 and 1.3 for i = 1, . . . , n − 1, in the
following order:

• if e > 0, we begin by u(1), u(2), . . . , u(n− 1)

• if e < 0, we begin by u(n − 1), u(n −
2), . . . , u(1)

Repeat steps 1.1 to 1.3 for all learning data. This
is called one iteration. Several iterations can be per-
formed, i.e. the same set of data is used several times.

step 2.1 : for every node left unmodifed in step 1 (begin
by lower levels), verify monotonicity relations with
upper and lower neighbors. If they are not verified,
modify the node as in step 1.3. It may happen here
that upper and lower neighbors do not themselves
satisfy the monotonicity relations. In this case, we
correct at first the nodes violating monotonicity.

1Also, α can be a value decreasing at each iteration.

3



step 2.2 : for every node left unmodified in step 1 (be-
gin by lower levels), adjust its value considering the
values of its upper and lower neighbors, in order to
have an homogeneous lattice. This is done by com-
puting the following quantities. Let u(i) be the node
considered:

• mean value of upper neighbors m(i) = 1/(n−
i)

∑
upper neighbors µJ

• mean value of lower neighbors m(i) =
1/i

∑
lower neighbors µJ

• minimum distance between u(i) and its upper
(resp. lower) neighbors, denoted dmin(i), (resp.
dmin(i)

If m(i) + m(i) − 2u(i) > 0, then u(i) is increased

unew(i) = uold(i)+β
(m(i) + m(i) − 2u(i))dmin(i)

2(m(i) + m(i))
(5)

otherwise u(i) is decreased

unew(i) = uold(i)+β
(m(i) + m(i) − 2u(i))dmin(i)

2(m(i) + m(i))
(6)

β is a constant value in [0, 1] (as before, β can be
made decreasing at each iteration).

Do steps 2.1. and 2.2 for every node left unmodi-
fied in the first step. This is called one iteration, and
several iterations can be done.

4 Properties and tests

The following properties can be noticed:

• when a datum has passed steps 1.2 and 1.3, the
monotonicity on the path is ensured, as well as the
monotonicity with neighbouring already modified
nodes.

• for the Choquet integral, clearly equation (4) corre-
sponds to the gradient descent algorithm of criterion
E = (Cµ(x) − y)2, with learning rate α/2emax.

• if the same datum is entered repeatedly, then the al-
gorithm converges.
(sketch of the proof: consider a datum (x, y) with
y = Cµ(x) for simplicity. Let us denote uk(i) the
value of node u(i) at the kth iteration, and u(i) the
true value. Then we have:
u1(i) = u0(i) − α(Cµ0(x) − Cµ(x))(x(n−i) −
x(n−i−1)). Developping and considering only the
terms in uk(i), we have u1(i) = Ku0(i) + (1 −
K)u(i), with K = 1 − α(x(n−i) − x(n−i−1))

2,
so that K ∈ [0, 1]. Then it is easy to prove that
uk(i) = Kku0(i)+(1−Kk)u(i), so that uk(i) con-
verges to the true value u(i). )

• if α = 1, and if we feed the algorithm with learning
data corresponding to the 2n vertices of the hyper-
cube [0, 1]n, then the algorithm converges exactly to
the solution in one iteration.
(sketch of the proof: from property 1, clearly the y
are the 2n coefficients of the fuzzy measure, so that
we have:
u1(i) = u0(i) − (Cµ0(x) − u(i)) = u(i).)

We now give some results of test in order to compare our
algorithm with the one of Mori and Murofushi. They pro-
posed an algorithm similar to our step 1, where the updat-
ing formula for a datum (x, y) is:

unew(i) = uold(i) − KCi
n

e

x(n)

The test consists of identifying the following fuzzy mea-
sure µ (table 1), using 81 samples data (x, y), with y =
Cµ(x) + n, where n is a centered gaussian noise, and x is
any input point in [0, 1]4 whose coordinates belong to the
set {0., 0.5, 1.}. The result of identification for different

A µ(A) A µ(A) A µ(A)
{1} 0.1 {1, 2} 0.3 {1, 2, 3} 0.5
{2} 0.2105 {1, 3} 0.3235 {1, 2, 4} 0.8667
{3} 0.2353 {1, 4} 0.7333 {1, 3, 4} 0.8824
{4} 0.6667 {2, 3} 0.4211 {2, 3, 4} 0.9474

{2, 4} 0.8070
{3, 4} 0.8235

Table 1: Fuzzy measure to be identified

values of variance of the noise is given in the comparative
table 2, where E2 = 1/81

∑
(y −Cµ(x))2. Performance

σ2 Mori & Murofushi our algorithm
noise n. iter. E2 n. iter. E2

0.0 97 0.0000 8 1.4e-7
0.00096 116 0.00087 10 0.00083
0.0125 70 0.0117 11 0.0108
0.00625 74 0.0605 11 0.0530
0.01250 79 0.1211 9 0.1054

Table 2: Results of identification for the two algorithms

is clearly better for our algorithm, especially in term of
speed of convergence. The experiment has been realized
with α = 0.5, and the number of iterations indicated cor-
responds to a stability of E2 at 10−6. The number of iter-
ations has been extended to 100 to verify the stability of
the result. With a lower value of α, precision is increased,
at the price of a longer time of convergence. This is sum-
marized in table 3, when σ2 = 0.0125.

We give now a comparison with a standard optimization
algorithm, namely the Lemke’s method (quadratic con-
strained programming method), which we perform on the

4



α n. iter. E2

0.5 11 0.0107846
0.25 27 0.00964529
0.1 52 0.00899498
0.05 86 0.00878478

Table 3: Effect of parameter α

tiles data of Zimmermann [14]. The tiles data are a set
of 24 data with n = 2. The Lemke’s method gives the
optimal unique solution to the minimization of the total
squared error

∑
(y − Cµ(x))2. If we compare it to the

solution provided by our algorithm, taking α = 0.05 (see
table 4), one can see that the two results are almost similar.
This shows that our algorithm is nearly optimal.

method total squared error µ({x1}) µ({x2})
Lemke 0.0602 0.27762 0.385163
ours 0.0613 0.281089 0.383663

Table 4: Comparison on the tiles data set

All the previous experiments concerned the step 1,
since the number of data was sufficient. Now we turn to
the examination of step 2. As we said before, the role of
step 2 is to get a fuzzy measure as homogeneous as pos-
sible. In order to verify this, we feed step 2 with a fuzzy
measure which has been distorded in the following way:

• let µ be the additive equidistributed measure (equi-
librium state), with n = 4.

• distord measures of subsets on the following path
towards low values: µ3 = 0, µ23 = 0.2, and
µ234 = 0.4.

• conversely, distord the nodes of another path towards
high values: µ1 = 0.6, µ13 = 0.9, and µ123 = 1.

Note that the fuzzy measure µ is no more monotonic. If
we suppose that the above modified nodes are the result
of step 1, we expect as a result of step 2 the following:

• the measure is monotonic

• nodes which are in the vicinity of path 1-13-123 (i.e.
µ12, µ14, and µ134 for the immediate neighbors) are
more or less between equilibrium state and high val-
ues of this path.

• similarly, nodes in the vicinity of path 3-23-234 (i.e.
µ34) are between the equilibrium state and low val-
ues.

The result of step 2 after 10 iterations with β = 1 is given
in table 5. Figures in bold face indicates fixed values (im-
posed by step 1). It can be seen that the result satisfies the
requirements.

A µ(A) A µ(A) A µ(A)
{1} 0.6 {1, 2} 0.642 {1, 2, 3} 1.0
{2} 0.2 {1, 3} 0.9 {1, 2, 4} 0.778
{3} 0.0 {1, 4} 0.627 {1, 3, 4} 0.9
{4} 0.235 {2, 3} 0.2 {2, 3, 4} 0.4

{2, 4} 0.4
{3, 4} 0.383

Table 5: Result of step 2

5 Application to pattern recognition

We illustrate the use of the algorithm in pattern recog-
nition. The author has previously proposed a method of
classification based on fuzzy integral (see [3, 5] for de-
tails). Let us consider the case of two classes for simplic-
ity. Roughly speaking, the method consists of combining
the decision of several sensors by Choquet integral, the
fuzzy measure expressing the relative importance of sen-
sors and their interaction for a given class. The crucial
point in this method is to identify correctly the fuzzy mea-
sures, using training data. It has been shown that the best
criterion for doing this is the following:

E2 =
∑

j

∑

k

|Ψ(∆Φ12(X
j
k)) − 1|2

where Xj
k is the kth training data of class j, Ψ a sigmoid-

type function, and ∆Φ12 is given by:

∆Φ12(X
j
k) = Φµ1

(C1|X
j
k) − Φµ2

(C2|X
j
k)

for j = 1, and 1 and 2 being inverted for j = 2.
Φµi

(Ci|X
j
k) is the Choquet integral w.r.t fuzzy measure

µi, combining the degrees of certainty that X j
k belongs

to class Ci. Until now, the minimization of J required a
constrained least mean squares (CLMS) algorithm, which
although efficient, is time and memory consuming. More-
over, CLMS requires a sufficient number of data.

Keeping the same criterion J , we use instead of CLMS
our algorithm, with slight adaptation. The expression of e

in formula (4) is now Ψ(∆Φ12(X
j
k))−1, which is always

≤ 0. Thus, for a training datum belonging to class 1, we
increase µ1 using (4) and decrease µ2 using (4) but with
−e instead of e. We call this algorithm Heuristic Least
Mean Squares (HLMS) in the sequel.

We give now some experimental results, on real and
simulated data. As real data, we used the cancer data (2
classes, 9 attributes, 284 data), and for simulated data, we
used a 2 classes, 5 attributes non gaussian problem, whose
classes are very intricated, with 200 data.

• comparison of CPU time, and final value of crite-
rion J . Since the criterion is the same for CLMS
and HLMS, we can compare their final value, in or-
der to see how close to optimal solution HLMS can

5



come. The test has been done on the whole set of
cancer data, after a reduction to 7 attributes by prin-
cipal component analysis (results on table 6). The
initial value of J is 237.22. As it can be seen, the

CPU (s) final value of J learning rate (%)
CLMS 1054 150.44 84.5
HLMS 5 167. 83.8

Table 6: Comparison of CLMS and HLMS (1)

ratio of CPU time is impressive, for a slight loss in
optimality.

• effect of a few number of training data. Taking the
cancer data, CLMS cannot be performed without a
reduction of the number of attributes to 7 (too few
data w.r.t. to the number of attributes). But HMLS
does not have any restriction on the number of data.
A comparison of the respective classification rates
is given in table 7, where the rate was estimated by
a random subsampling with 70%, 10 runs (standard
deviation of estimate is 2.79%). As it can be seen,

classification rate (%)
CLMS 72.9
HLMS 77.4
HLMS without step 2 76.9

Table 7: Comparison of CLMS and HLMS (2)

the improvement is significant. Moreover, as far
as the author knows, the best performance recorded
for the cancer data was 77.1%, by Predictive Value
Maximization Rule [13], implying that fuzzy inte-
gral achieves the best known result. Note the slight
loss in performance when step 2 of the algorithm is
not performed.

Another test was performed with the simulated data,
taking only 20% of the data for training (this is the
lower limit for CLMS). The comparison is given in
table 8, where the classification rate has been esti-
mated by performing 100 runs of a random subsam-
pling at 20%.

classification rate (%)
CLMS 69.8
HLMS 71.4

Table 8: Comparison of CLMS and HLMS (3)

Clearly, HLMS performs better in the situations tested
above. Also, it can be used even for a high number of at-
tributes, since it does not require much memory to work.

For more standard situations, i.e. few attributes, sufficient
training data, CLMS performs better than HLMS, since
the latter is suboptimal, but at the price of a much higher
CPU time.

6 Concluding remarks

We have proposed a new algorithm of identification of
fuzzy measures, and shown its efficiency through several
tests in modeling and pattern recognition. Although a
deeper study of the algorithm seems to be necessary, in
particular concerning convergence properties, monotonic-
ity, etc, the first results presented here are quite encourag-
ing. A next topic of study would be the use of this algo-
rithm for other kinds of fuzzy integrals, as Sugeno integral
and fuzzy t-conorm integrals.

References
[1] D. Denneberg, Non-Additive Measure and Integral,

Kluwer Academic, 1994.
[2] M. Grabisch, T. Murofushi, M. Sugeno, Fuzzy Measure

of Fuzzy Events Defined by Fuzzy Integrals, Fuzzy Sets
& Systems 50 (1992), 293-313.

[3] M. Grabisch, M. Sugeno, Multi-attribute classification
using fuzzy integral, 1st FUZZ’IEEE Congress, San
Diego, march 92, 47-54.

[4] M. Grabisch, A survey of applications of fuzzy measures
and integrals, 5th Int. Fuzzy Systems Assoc. Conf., Seoul,
Korea, july 1993.

[5] M. Grabisch. J.M. Nicolas, Classification by fuzzy inte-
gral — Performance and tests, to appear in Fuzzy Sets &
Systems, special issue on Pattern Recognition.

[6] M. Grabisch, Fuzzy integral in multicriteria decision
making, to appear in Fuzzy Sets & Systems, Special is-
sue on 5th IFSA Congress

[7] T. Mori, T. Murofushi, An analysis of evaluation model
using fuzzy measure and the Choquet integral, 5th Fuzzy
Systems Symposium, Kōbe, Japan, june 2-3 1989 (in
japanese).

[8] T. Murofushi, M. Sugeno, Fuzzy t-conorm integrals with
respect to fuzzy measures: generalization of Sugeno in-
tegral and Choquet integral, Fuzzy Sets & Systems 42
(1991), 57-71.

[9] H.T. Nguyen, E.A. Walker, M. Grabisch, Fundamentals
of Uncertainty Calculi, with Applications to Fuzzy Infer-
ence, Kluwer Acad., to appear in 1994.

[10] J. Quiggin, Generalized Expected Utility Theory, Kluwer
Academic, 1993.

[11] M. Sugeno, T. Murofushi, Fuzzy Measure, Course in
Fuzzy Theory, Vol. 3, Nikkan Kōgyō Shimbunsha, 1992
(in japanese).

[12] Z. Wang, G. Klir, Fuzzy Measure Theory, Plenum Press,
1992.

[13] S.M. Weiss, I. Kapouleas, An empirical comparison of
pattern recognition, neural nets, and machine learning
classification methods, Proc. 11th IJCAI, 781-787.

[14] H.-J. Zimmermann, P. Zysno, Latent Connectives in Hu-
man Decision Making, Fuzzy Sets & Systems 4 (1980),
37-51.

6


