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1. Introduction

This article gives a survey of the theory of fuzzy measures and fuzzy integrals.
The measure is one of the most important concepts in mathematics and so
is the integral with respect to the measure. They have many applications in
engineering, and their main characteristic is the additivity. This characteristic
is very effective and convenient, but often too inflexible or too rigid. As a
solution to the rigidness problem the fuzzy measure was proposed [1]. It is
an extension of the measure in the sense that the additivity of the measure
is replaced with a weaker condition, the monotonicity. The non-additivity is
the main characteristic of the fuzzy measure, so that it is also called a non-
additive measure. ‘Fuzzy integral’ is a general term for integrals with respect
to the fuzzy measure. There are many kinds of fuzzy integrals: the Choquet
integral, the Šipoš integral, the Sugeno integral, the t-conorm integral, etc.
We discuss mainly the Choquet integral among them.

We deal only with finite-valued fuzzy measures on finite sets and omit
the discussion about infinite-valued fuzzy measures and fuzzy measures on
infinite sets. One reason is that so far almost all practical applications have
used only finite-valued fuzzy measures on finite sets. The other reason is that
the theory of such fuzzy measures is much easier than the general one. Fuzzy
measures and the Choquet integral on infinite sets are presented in detail in
the monograph of Denneberg [2] (see also his article [3] in this volume).

This article is organized as follows. Section 2 discusses finite-valued mea-
sures and the ordinary integral on finite sets. From the mathematical point
of view, measures on finite sets are meaningless; although such a measure
is a set function, it is equivalent to a point function. Such measures are,
however, important for the comparison with fuzzy measures. Infinite-valued
measures on infinite sets are discussed in Appendix. Section 3 discusses fuzzy
measures and the Choquet integral on finite sets; basic properties and exam-
ples are shown. Section 4 introduces various types of fuzzy measures: λ-fuzzy
measures, possibility measures, and decomposable measures. Section 5 shows
three types of fuzzy integrals: Šipoš integral, Sugeno integral, and t-conorm
integral. Other kinds of fuzzy integral will be discussed in the articles by
Benvenuti and Mesiar [4] and by Imaoka [5] in this volume.

We denote the set of real numbers by R and the set of non-negative real
numbers by R+. All functions we deal with are real-valued. Throughout the
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article except the appendix, X is assumed to be a finite set. Its power set,
which is the family of all subsets of X, is denoted by 2X . We use the term
‘family’ for a set of sets.

2. Measures and Integral

2.1 Set functions

Definition 2.1. A function ξ defined on a family of sets is called a set func-
tion. Let ξ be a set function defined on 2X .

(i) The set function ξ is said to be additive if for every pair of disjoint
subsets A and B of X

ξ(A ∪B) = ξ(A) + ξ(B) .

(ii) The set function ξ is said to be monotone if for every pair of subsets A
and B of X such that A ⊂ B

ξ(A) ≤ ξ(B) .

(iii) The set function ξ is said to be normalized if

min{ξ(A) |A ⊂ X} = 0 and max{ξ(A) |A ⊂ X} = 1 .

If ξ is additive, then ξ(∅) = 0 since ξ(∅) = ξ(∅) + ξ(∅). A non-negative
additive set function is monotone; if ξ is non-negative and additive, and if
A ⊂ B ⊂ X, then ξ(B) = ξ(A ∪ (B \ A)) = ξ(A) + ξ(B \ A) ≥ ξ(A), where
B \ A = {x |x ∈ B, x 6∈ A}, since ξ(B \ A) ≥ 0. Since X is a finite set, an
additive set function ξ defined on 2X can be represented as

ξ(A) =
∑

x∈A

ξ({x}) for A ⊂ X .

Definition 2.2. Let ξ be a set function defined on 2X and A a subset of X.
The restriction ξA of ξ to A is defined as

ξA(B) = ξ(A ∩B) for all B ⊂ X .

A restriction ξA of ξ has the same properties as ξ; if ξ is additive (or
monotone or non-negative) then so is ξA.

Definition 2.3. For a set function ξ defined on 2X such that ξ(∅) = 0, its
conjugate set function ξ is defined as

ξ(A) = ξ(X)− ξ(Ac) for all A ⊂ X ,

where Ac is the complement of A.

By definition, ξ(∅) = 0. If ξ(∅) = 0, then it follows that ξ(X) = ξ(X) and
hence that ξ = ξ. If ξ is additive, then it is self-conjugate, i.e., ξ = ξ. If ξ is
monotone, then so is ξ. When ξ is normalized and monotone, its conjugate ξ
is also called the dual of ξ.
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2.2 Measures

Definition 2.4. A measure on X is a non-negative additive set function de-
fined on 2X . A normalized measure is called a probability measure. A signed
measure on X is an additive set function defined on 2X .

A probability measure is a measure, and a measure is a signed measure
(Fig. 2.1). A set function P is a probability measure iff (if and only if) it is
a measure such that P (X) = 1.

Signed measures

Measures

Probability
measures

Fig.2.1. Families of probability measures, mea-
sures, and signed measures on X

A measure measures the size of sets. The number of elements in a set is
a kind of measure of the size of sets.

Example 2.1. Let X be a finite set. The set function mc defined as

mc(A) = |A| ,

where |A| is the number of elements of A, is a measure on X, which is called
the counting measure on X.

The volume and mass also can be regarded as sizes of sets. Although a
size is usually non-negative, we can imagine a size taking a negative value.
The quantity of electricity can be regarded as such a size.

Example 2.2. Let X be a finite set of objects (solid bodies).

(i) Let the volume of each object x be vx cm3. Then the set function
V : 2X →R+ which measures the volume of each subset A of X,

V (A) =
∑

x∈A

vx ,

is a measure on X.

(ii) Let the mass of each object x be mx g. Then the set function M : 2X →
R+ which measures the mass of each subset A of X,

M(A) =
∑

x∈A

mx ,

is a measure on X.
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(iii) Let each object x be electrified with qx coulombs. Then the set function
Q : 2X → R which measures the quantity of electricity of each subset A
of X,

Q(A) =
∑

x∈A

qx ,

is a signed measure on X.

The probability can be regarded as a size of sets.

Example 2.3. Consider the situation where one tosses a die and observes the
number on the top face. Let X = {1, 2, 3, 4, 5, 6}, the set of possible outcomes.
Then the set function P : 2X → R+ which measures the probability of each
subset of X is a probability measure. If the die is unbiased, or fair, then
P ({x}) = 1/6 for every x ∈ X.

The following is a special measure.

Example 2.4. Let x0 be an element of X. The set function δx0 defined as

δx0(A) =
{

1 if x0 ∈ A ,
0 if x0 6∈ A

is a measure on X, which is called the Dirac measure on X focused on x0.

Definition 2.5. Let m be a signed measure on X. A subset N of X is called
an m-null (or simply null) set if m(M) = 0 whenever M ⊂ N .

Example 2.5. (Continued from Example 2.2 (iii)). A subset A of X is a Q-null
set iff all the elements of A are not electrified at all.

Example 2.6. (Continued from Example 2.4.) Let x0 ∈ X. A subset A of X
is a δx0 -null set iff x0 6∈ A.

The following proposition shows properties of null sets.

Proposition 2.1. Let m be a signed measure.

(i) The empty set is a null set.
(ii) A null set is of measure zero.
(iii) If m is non-negative, i.e., a measure, then a set of measure zero is a null

set.
(iv) A subset of a null set is a null set.
(v) A union of null sets is a null set.
(vi) A set N is null ⇐⇒ µ(A ∪M) = µ(A) ∀M ⊂ N , ∀A ⊂ X,

⇐⇒ µ(A \M) = µ(A) ∀M ⊂ N , ∀A ⊂ X,
⇐⇒ µ(A4M) = µ(A) ∀M ⊂ N , ∀A ⊂ X,

where A4B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

Statement (vi) means that null sets are negligible.
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Definition 2.6. Let m be a signed measure on X, f a function on X, and
F a non-null set. The essential supremum and essential infimum of f on F ,
denoted by ess supx∈F f(x) and ess infx∈F f(x), are defined as

ess sup
x∈F

f(x) = min{r | the set {x ∈ F | f(x) > r} is m-null }

and

ess inf
x∈F

f(x) = max{r | the set {x ∈ F | f(x) < r} is m-null } ,

respectively.

The above definition is the one in the general case where X is not assumed
to be a finite set. In the case of X being a finite set, the essential supremum
and the essential infimum can be defined as

ess sup
x∈F

f(x) = max{f(x) |x ∈ F, the singleton set {x} is not null },

ess inf
x∈F

f(x) = min{f(x) |x ∈ F, the singleton set {x} is not null } .

Then the essential supremum and the essential infimum may be called the
essential maximum and the essential minimum, respectively.

Example 2.7. Let X = {x1, x2, x3, x4}, m be a signed measure on X such that
m({x1}) = 0, m({x2}) 6= 0, m({x3}) 6= 0, m({x4}) = 0, and f a function on
X such that f(x1) = 1, f(x2) = 2, f(x3) = 3, f(x4) = 4. Then, obviously x1

gives the minimum of f , minx∈X f(x) = 1, and x4 gives the maximum of f ,
maxx∈X f(x) = 4. Since {x1} and {x4} are null sets, and since null sets are
negligible, the minimum f(x1) and the maximum f(x4) are meaningless. On
the other hand, since

{x ∈ X | f(x) > r} =





∅ if 4≤ r ,
{x4} if 3≤ r < 4 ,
{x3, x4} if 2≤ r < 3 ,
{x2, x3, x4} if 1≤ r < 2 ,
{x1, x2, x3, x4} if r < 1 ,

{x ∈ X | f(x) < r} =





∅ if r ≤ 1 ,
{x1} if 1 < r ≤ 2 ,
{x1, x2} if 2 < r ≤ 3 ,
{x1, x2, x3} if 3 < r ≤ 4 ,
{x1, x2, x3, x4} if 4 <r ,

and since {x1} and {x4} are null sets, it follows that

ess sup
x∈X

f(x) = 3 , ess inf
x∈X

f(x) = 2 .

Note that

ess sup
x∈X

f(x) = max
x∈{x2,x3}

f(x) , ess inf
x∈F

f(x) = min
x∈{x2,x3}

f(x) .
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2.3 Integral

Definition 2.7. Let m be a signed measure on X and f a function on X.
The integral

∫
f(x) dm(x) (or simply

∫
f dm) of f with respect to m is defined

as ∫
f dm =

∑

x∈X

f(x) ·m({x}) (2.1)

(Figs. 2.2 and 2.3). (Note that X is a finite set.)

X = {x1, x2, x3, x4, x5}

y = f(x)

f(x5)

f(x4)

f(x3)
= f(x2)

f(x1)

0

6

y

x1 x2 x3 x4 x5

Fig. 2.2. Graph of f

Let A ⊂ X. The integral
∫

A
f(x) dm(x) (or simply

∫
A

f dm) over A is
defined as ∫

A

f dm =
∫

f1A dm ,

where 1A is the indicator (or characteristic function) of A;

1A(x) =
{

1 x ∈ A ,
0 x 6∈ A .

Obviously ∫

X

f dm =
∫

f dm

and ∫

A

f dm =
∑

x∈A

f(x) ·m({x}) =
∫

f dmA .

Example 2.8. (Continued from Example 2.1.) Let mc be the counting measure
on X. Then for every A ⊂ X and every function f on X,

∫

A

f dmc =
∑

x∈A

f(x) .
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Example 2.9. (Continued from Example 2.2 (i), (ii)). Let the density of each
x ∈ X be f(x) g/cm3. The integral of f with respect to V is equal to the
total mass of X. Moreover, for every A ⊂ X

M(A) =
∫

A

f dV .

The integral of f with respect to a probability measure P is called the
expectation or expected value of f , and it is denoted as E(f ; P ), EP (f), or
simply E(f).

Example 2.10. (Continued from Example 2.3). Consider the situation where
one tosses a die and, if the number on the top face is x, then the person gets
f(x) dollars. Then the expectation of the money the person will get is given
by

E(f ;P ) =
∫

f dP =
6∑

i=1

f(i) · P ({i}) .

Example 2.11. (Continued from Example 2.4.) Let x0 ∈ X and δx0 be the
Dirac measure focused on x0. Then for every function f on X,

∫
f dδx0 = f(x0) .

The integral has the following properties.

Z
f dm = ©1 +©2 +©3 +©4 +©5

©1 = f(x1) ·m({x1})
©2 = f(x2) ·m({x2})
©3 = f(x3) ·m({x3})

©4 = f(x4) ·m({x4})
©5 = f(x5) ·m({x5})

f(x5)

f(x4)

f(x3)
= f(x2)

f(x1)

0

6

y

m({x1}) m({x2}) m({x3}) m({x4}) m({x5})
- - - - -¾ ¾ ¾ ¾ ¾

©1
©2 ©3

©4
©5

?

? ?

?

?

p p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p p
p p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p p

q qq qq qq qq qq qq qq q

q qq qq qq qq qq qq qq q

p pp pp pp pp pp pp pp p
p pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp p
p pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp p
p pp pp pp pp pp pp pp p

Fig. 2.3. The integral of f
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Proposition 2.2. Let m be a signed measure on X. Let a, b, a1, a1, . . . , an

be real numbers, f and g functions on X, and A, A1, A2, . . . , An subsets of
X.

(i) ∫
(af + bg) dm = a

∫
f dm + b

∫
g dm .

(ii) ∫ n∑

i=1

ai1Ai
dm =

n∑

i=1

ai ·m(Ai) ;

especially ∫
1A dm = m(A) .

(iii) If m is a measure and f ≤ g, then
∫

f dm ≤
∫

g dm .

(iv) If N is a null set, and if f(x) = g(x) for all x 6∈ N , then
∫

f dm =
∫

g dm .

Concerning (ii) of the above proposition, note that every function f on
X can be represented as

f =
n∑

i=1

ai1Ai ;

for instance,

f =
∑

x∈X

f(x)1{x} (2.2)

=
n∑

i=1

ai1{x|f(x)=ai} (2.3)

=
n∑

i=1

(ai − ai−1) 1{x|f(x)≥ai} , (2.4)

where {a1, a2, . . . , an} is the range {f(x) |x ∈ X} of f , a1 ≤ a2 ≤ · · · ≤ an,
and a0 = 0.

For a function f represented as (2.2), by Proposition 2.2 (ii) its integral
is given by (2.1) as in Fig. 2.3. For (2.3) the integral is given by

∫
f dm =

n∑

i=1

ai ·m({x|f(x) = ai}) (2.5)
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as in Fig. 2.4. For (2.4), the integral is given by

∫
f dm =

n∑

i=1

(ai − ai−1) ·m({x|f(x) ≥ ai}) (2.6)

as in Fig. 2.5. The right hand sides of (2.1), (2.5), and (2.6) are the same
value since the (signed) measure m is additive.

Z
f dm = ©1 +©2 +©3 +©4

©1 = a1 ·m({x|f(x) = a1})
©2 = a2 ·m({x|f(x) = a2})

©3 = a3 ·m({x|f(x) = a3})
©4 = a4 ·m({x|f(x) = a4})

a4

a3

a2

a1

0

6

y

m({x|f(x) = a1})
m({x|f(x) = a2})

m({x|f(x) = a3})
m({x|f(x) = a4})-¾

-¾
-¾

-¾

©1

©2

©3

©4

?

?

?

?

p p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p p
p p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p pp p p p p

p pp pp pp pp pp pp pp p
p pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp p
p pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp p
p pp pp pp pp pp pp pp p

Fig. 2.4. The integral of f

3. Fuzzy Measures and the Choquet Integral

The contents of this section, except the last part, are based on [6, 7].

3.1 Fuzzy measures

Definition 3.1. A (monotonic) fuzzy measure on X is a monotone set func-
tion defined on 2X which vanishes at the empty set. A non-monotonic (or
signed) fuzzy measure is a set function defined on 2X which vanishes at the
empty set.

Obviously a fuzzy measure is a particular case of non-monotonic fuzzy
measure. A fuzzy measure is non-negative since µ(A) ≥ µ(∅) = 0 for every
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Z
f dµ = ©1 +©2 +©3 +©4

©1 = (a1 − a0) · µ({x|f(x) ≥ a1})
©2 = (a2 − a1) · µ({x|f(x) ≥ a2})
©3 = (a3 − a2) · µ({x|f(x) ≥ a3})
©4 = (a4 − a3) · µ({x|f(x) ≥ a4})

a4

a3

a2

a1

a0 = 0

6

y
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µ({x|f(x) ≥ a2})

µ({x|f(x) ≥ a4})

µ({x|f(x) ≥ a5})
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Fig. 2.5. The integral of f

A ⊂ X. An additive non-monotonic fuzzy measure is a signed measure, and
an additive fuzzy measure is a measure since it is non-negative. A signed
measure is a non-monotonic fuzzy measure since it vanishes at the empty
set, and a measure is a fuzzy measure since it is monotone; therefore the
(resp. non-monotonic) fuzzy measure is an extension of the (resp. signed)
measure (Fig. 3.1).

Note that a fuzzy measure is not necessarily a measure. The difference
between a fuzzy measure and a measure (or a non-monotonic fuzzy measure
and a signed measure) is that the former is not necessarily additive. The main
characteristic of a (non-monotonic) fuzzy measure is the non-additivity, so
that a (non-monotonic) fuzzy measure is also called a non-additive measure.

We give concrete examples of monotonic and non-monotonic fuzzy mea-
sures.

Example 3.1. Let X be the set of all workers in a workshop, and suppose
they produce the same products. For each A ⊂ X, we consider the situation
that the members of group A work in the workshop. Each group may have
various ways to work: various combinations of joint work and divided work.
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Non-monotonic fuzzy measures

Signed measures

Fuzzy
measuresMeasures

Fig. 3.1. Families of set functions

on a finite set X

But suppose that every group works in the most efficient way. Let µ(A) be the
number of the products made by group A in one hour. Then the set function
µ : 2X → R+ is monotone and vanishes at the empty set, and therefore it is
a fuzzy measure.

The fuzzy measure µ is not necessarily additive. Let A and B be dis-
joint subsets of X, and consider the productivity of the coupled group
A ∪ B. If A and B work separately, then µ(A ∪ B) = µ(A) + µ(B). But,
since they generally interact on each other, the equality may not always
hold. The effective cooperation of members of A ∪ B yields the inequality
µ(A ∪ B) > µ(A) + µ(B). On the other hand, the incompatibility between
A’s operation and B’s, i.e., the impossibility of separate working, yields the
opposite inequality µ(A ∪B) < µ(A) + µ(B). For example, the incompatibil-
ity is caused by limited space and/or insufficient equipments; sufficient space
together with sufficient equipments makes separate working possible.

In the above example, the assumption “every group works in the most
efficient way” brings the monotonicity of µ. Let A and B be disjoint subsets
of X. If groups A and B are on bad terms with each other, and if they work
together against their will, then their productivity may fall below that of
either group; µ(A ∪ B) < µ(A) and/or µ(A ∪ B) < µ(B). The monotonicity
assumption works to such a case. The most efficient way of working is to turn
some troublemakers out of the workshop; in the worst case all members of one
group are turned out. Then the monotonicity is recovered; µ(A ∪ B) ≥ µ(A)
and µ(A ∪ B) ≥ µ(B). If the monotonicity assumption is removed, we can
obtain a non-monotonic version:

Example 3.2. Instead of the monotonicity assumption we assume that, for
each group A, all members of A must work together in the workshop. Let
ν(A) be the number of the products made by A in one hour. Obviously the
set function ν : 2X → R+ is a non-monotonic fuzzy measure. As mentioned
above, ν is not necessarily monotonic.

In the following example, we try to formalize the normalized fuzzy mea-
sures as a measure of certainty.
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Example 3.3. Let x0 be the right answer to a specific question, and X be
the set of possible answers. Examples of questions and their answers are as
follows:

(a) ‘What the number on the top face will come out if the dice is thrown?’
x0 : the number on the top face.
X = {1, 2, 3, 4, 5, 6}.

(b) ‘Who is the criminal among the suspects a, b, c?’
x0 : the criminal.
X = {a, b, c}.

Let us make assumptions on x0 and X as follows:

Exhaustiveness Assumption:
The set X contains all the possible answers to the question.

Exclusiveness Assumption:
All the elements of X are mutually exclusive, or in other words, two
distinct answers cannot become right at the same time.

As a consequence, there is one and only one right answer x0 in X.
Now let us try to represent our knowledge or judgment about the certainty

of the proposition ‘x0 ∈ E’ by giving a real number P (E). We can express the
degree of certainty of the proposition ‘x0 ∈ E’ by P (E) instead of P (x0 ∈ E)
because the logical combinations among propositions of the form ‘x0 ∈ E’
can be represented in the same form. Indeed,

x0 ∈ E or x0 ∈ F ⇐⇒ x0 ∈ E ∪ F ,

by Exhaustiveness Assumption

x0 ∈ E and x0 ∈ F ⇐⇒ x0 ∈ E ∩ F ,

and by Exhaustiveness and Exclusiveness Assumptions

not x0 ∈ E ⇐⇒ x0 ∈ Ec .

We shall set the following three conditions concerning the numerical rep-
resentation of certainty, which are independent of the above-mentioned two
assumptions.

Monotonicity Condition:
If the proposition ‘x0 ∈ F ’ is equally or more certain than the proposition
‘x0 ∈ E’, then P (E) ≤ P (F ).

Lower Bound Condition:
If certainly x0 6∈ E, then P (E) = 0.

Upper Bound Condition:
If certainly x0 ∈ E, then P (E) = 1.
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Since ‘x0 ∈ E’ implies ‘x0 ∈ F ’ whenever E ⊂ F , it follows from Mono-
tonicity Condition that

E ⊂ F =⇒ P (E) ≤ P (F ) . (3.1)

Since x0 6∈ ∅, it follows from Lower Bound Condition that

P (∅) = 0 . (3.2)

Since x0 ∈ X by Exhaustiveness Assumption, it follows from Upper Bound
Condition that

P (X) = 1 . (3.3)

From mathematical standpoint, we will adopt (3.1)–(3.3) as the axioms of
the measure of certainty (or the normalized fuzzy measure).

If x0 is known, our knowledge must be expressed by the Dirac measure δx0 .
Obviously the probability measure satisfies (3.1)–(3.3) and can be regarded
as a measure of certainty. In the next section, we introduce another measure
of certainty named a possibility measure.

Now we discuss null set with respect to fuzzy measures.

Definition 3.2. Let µ be a non-monotonic fuzzy measure on X. A set N ⊂
X is called a µ-null set (or simply null set) if

µ(A ∪M) = µ(A) ∀M ⊂ N , ∀A ⊂ X .

Example 3.4. (Continued from Example 3.1). Assume that a worker x0 can
neither produce any products by oneself nor help any other workers. Then
evidently the worker x0 is suitable to be called incompetent or null. This
situation can be expressed by

µ(A ∪ {x0}) = µ(A) ∀A ⊂ X ,

and hence {x0} is a null set.

The following proposition shows properties of null sets. The statements (v)
and (vi) show that the null set defined above is an extension of that in the
ordinary measure theory.

Proposition 3.1. Let µ be a non-monotonic fuzzy measure.

(i) The empty set is a null set.
(ii) A null set is of measure zero.
(iii) A set N is null ⇐⇒ µ(A \M) = µ(A) ∀M ⊂ N , ∀A ⊂ X,

⇐⇒ µ(A4M) = µ(A) ∀M ⊂ N , ∀A ⊂ X.
(iv) If µ is monotone, i.e., a fuzzy measure, then a necessary and sufficient

condition for N ⊂ X to be a null set is that

µ(A ∪N) = µ(A) ∀A ⊂ X .
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(v) If µ is additive, then the necessary and sufficient condition for N ⊂ X
to be a null set is that µ(M) = 0 whenever M ⊂ N .

(vi) If µ is additive and non-negative, then the necessary and sufficient
condition for N ⊂ X to be a null set is that µ(N) = 0.

(vii) A subset of a null set is a null set.
(viii) A union of null sets is a null set.

3.2 The Choquet integral

In this subsection we introduce the Choquet integral. It is an extension of
the ordinary integral and the most natural fuzzy integral.

Since a fuzzy measure is generally non-additive, the right hand sides of
(2.1), (2.5), and (2.6) are generally different from each other. The right hand
side of (2.6) is the most appropriate to the integration with respect to (non-
monotonic) fuzzy measures, and this is the Choquet integral.

Definition 3.3. Let µ be a non-monotonic fuzzy measure on X and f a
function on X with range {a1, a2, . . . , an} where a1 ≤ a2 ≤ · · · ≤ an. The
Choquet integral (C)

∫
f(x) dµ(x) (or simply (C)

∫
f dµ) of f with respect to

µ is defined as

(C)
∫

f dµ =
n∑

i=1

(ai − ai−1) · µ({x|f(x) ≥ ai}) ,

where a0 = 0.

Fig. 2.3 shows the Choquet integral with a1 > 0. If a1 < 0, it is shown
as in Fig. 3.2. From the arguments before the definition it follows that the
Choquet integral with respect to a signed measure coincides with the ordinary
integral, that is, the Choquet integral is an extension of the ordinary integral.

We give concrete examples of the Choquet integral.

Example 3.5. (Continued from Example 3.1). Let X = {x1, x2, . . . , xn}. One
day each worker xi works f(xi) hours from the opening hour. Without loss of
generality, we can assume that f(x1) ≤ f(x2) ≤ · · · ≤ f(xn). Then we have
for i ≥ 2,

f(xi)− f(xi−1) ≥ 0

and

f(xi) = f(x1) + [f(x2)− f(x1)] + [f(x3)− f(x2)] + · · ·+ [f(xi)− f(xi−1)] .

Now let us aggregate the working hours of all the workers in the following
way. First the group X with n workers works f(x1) hours, next the group
X \ {x1} = {x2, x3, . . . , xn} works f(x2) − f(x1) hours, then the group X \
{x1, x2} = {x3, x4, . . . , xn} works f(x3) − f(x2) hours, . . ., lastly worker xn

works f(xn) − f(xn−1) hours. Therefore, since a group A ⊂ X produces the
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(C)
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Fig. 3.2. The Choquet integral of f

amount µ(A) in one hour, the total number of the products produced by the
workers is expressed by

f(x1) · µ(X)
+ [f(x2)− f(x1)] · µ(X \ {x1})
+ [f(x3)− f(x2)] · µ(X \ {x1, x2})
+ · · ·
+ [f(xn)− f(xn−1)] · µ({xn})

=
n∑

i=1

[f(xi)− f(xi−1)] · µ({xi, xi+1, . . . , xn}) ,

where f(x0) = 0. This is nothing but the Choquet integral of f with respect
to µ.

Example 3.6. (Continued from Example 3.2). In the same situation as in the
previous example. The total number of the products produced by the workers
is expressed by the Choquet integral (C)

∫
f dν.
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Note 3.1. There are two different definitions of (C)
∫

A
f dµ; one is

(C)
∫

A

f dµ = (C)
∫

f1A dµ (3.4)

and the other is
(C)

∫

A

f dµ = (C)
∫

f dµA , (3.5)

where µA is the restriction of µ to A (Definition 2.2). If f is non-negative,
the right hand sides of (3.4) and (3.5) coincide with one another. If f takes
a non-negative value, however, they are generally different.

The Choquet integral has the following properties.

Proposition 3.2. Let f and g be functions on X and A a subset of X.

(i)

(C)
∫

1A dµ = µ(A) .

(ii) If µ is a fuzzy measure and f ≤ g, then

(C)
∫

f dµ ≤ (C)
∫

g dµ .

(iii) If a is a non-negative real number and b is a real number, then

(C)
∫

(af + b) dµ = a · (C)
∫

f dµ + b · µ(X) .

(iv)

(C)
∫

(−f) dµ = −(C)
∫

f dµ .

(v)

(C)
∫

(−f) dµ = −(C)
∫

f dµ for all functions f on X

iff µ = µ.

(vi)

(C)
∫

f dµ = (C)
∫

f+ dµ− (C)
∫

f− dµ ,

where f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}.
(vii) If a is a real number, then

(C)
∫

f d(a · µ) = a · (C)
∫

f dµ .
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(viii) If µ and ν are fuzzy measures on X such that µ ≤ ν and µ(X) = ν(X),
then for all function f on X

(C)
∫

f dµ ≤ (C)
∫

f dν .

(ix) If N is a null set, and if f(x) = g(x) for all x 6∈ N , then

(C)
∫

f dµ = (C)
∫

g dµ .

In the rest of this section, we show that the Choquet integral has a great
expressive power; it can represent several important quantities [8]. First, we
show that it can represent maximum, minimum, essential supremum, and
essential infimum.

Definition 3.4. A 0-1 fuzzy measure is a fuzzy measure whose range is
{0, 1}.
Proposition 3.3. Let µ be a 0-1 fuzzy measure. Then for every function f
on X

(C)
∫

f dµ = max
A:µ(A)=1

min
x∈A

f(x) .

Definition 3.5. Let F be a non-empty subset of X. A set function PosF

defined as

PosF (A) =
{

1 if A ∩ F 6= ∅ ,
0 if A ∩ F = ∅

is called the 0-1 possibility measure focused on F . A set function NecF defined
as

NecF (A) =
{

1 if F ⊂ A ,
0 if F 6⊂ A

is called the 0-1 necessity measure focused on F .

Obviously, 0-1 possibility measure and 0-1 necessity measure are 0-1 fuzzy
measures, and PosF and NecF are conjugate, or dual. If x0 ∈ X, then
Pos{x0} = Nec{x0} = δx0 , the Dirac measure focused on x0. For every nor-
malized fuzzy measure µ on X, it holds that NecX ≤ µ ≤ PosX .

Proposition 3.4. Let F be a non-empty subset of X and f a function on
X.

(i)

(C)
∫

f dPosF = max
x∈F

f(x) .

(ii)

(C)
∫

f dNecF = min
x∈F

f(x) .



20

(iii) For every normalized fuzzy measure µ on X

min
x∈X

f(x) ≤ (C)
∫

f dµ ≤ max
x∈X

f(x) .

The Choquet integral as an expectation has good properties: Proposi-
tion 3.2 (iii) and Proposition 3.4 (iii).

Definition 3.6. Let m be a signed measure and F a non-null subset of X.
A set function ess PosF defined as

ess PosF (A) =
{

1 if A ∩ F is not m-null ,
0 if A ∩ F is m-null

is called the 0-1 essential possibility measure focused on F . A set function
essNecF defined as

essNecF (A) =
{

1 if F \A is m-null ,
0 if F \A is not m-null

is called the 0-1 essential necessity measure focused on F .

Proposition 3.5. Let m be a signed measure, F a non-null subset of X, and
f a function on X. Then

(C)
∫

f d(ess PosF ) = ess sup
x∈F

f(x) ,

(C)
∫

f d(essNecF ) = ess inf
x∈F

f(x) .

Since X is assumed to be a finite set, 0-1 essential possibility measures and
0-1 essential necessity measures are represented as 0-1 possibility measures
and 0-1 necessity measures, respectively. Indeed, for every non-null set F , if
we define

ess F = {x ∈ F | the singleton set {x} is not null } ,

then
ess PosF = Posess F , essNecF = Necess F .

When X is a infinite set, 0-1 essential possibility (or 0-1 essential necessity)
measures are not always represented as 0-1 possibility (or 0-1 necessity) mea-
sures.

The Choquet integral can represent the OWA operators, or the L-estimators.
The definition of OWA operators is as follows.
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Definition 3.7. [9] Let w1, w2, . . . , wn be non-negative numbers such that∑n
i=1 wi = 1 and w = (w1, w2, . . . , wn). The ordered weighted averaging

(OWA) operator with weight w is a function F from [0, 1]n into [0, 1] defined
as

F (r1, r2, . . . , rn) =
n∑

i=1

wi · r(i) ,

where (i) is a permutation satisfying r(1) ≤ r(2) ≤ · · · ≤ r(n).

The OWA operator can be extended to a function from Rn into R. In
statistics such a function is called an L-estimator, which is a linear combina-
tion of order statistics. The L-estimator, or the extended OWA operator, is
the arithmetic mean when wi = 1/n (i = 1, 2, . . . , n), it is the median when

wi =





1 if n is odd and i = (n + 1)/2 ,
1/2 if n is even and i = n/2 or (n/2) + 1 ,
0 otherwise ,

it is the α-trimmed mean when

wi =
{

1/(n− 2[nα]) if [nα] < i ≤ n− [nα] ,
0 otherwise ,

it is the α-Winsorized mean when

wi =





1/n if [nα] < i ≤ n− [nα] ,
[nα]/n if i = [nα] or n− [nα] + 1 ,
0 otherwise ,

and it is the k-th minimum, or the (n− k + 1)-th maximum, when

wi =
{

1 if i = k ,
0 otherwise .

Note that [ ] is the Gauss symbol, i.e., [r] stands for the greatest integer not
exceeding r.

We can treat any r = (r1, r2, . . . , rn) ∈ Rn as the function fr on X =
{1, 2, . . . , n} such that fr(i) = ri (i = 1, 2, . . . , n). Then the Choquet integral
induces a function from Rn into R such that

r = (r1, r2, . . . , rn) 7→ (C)
∫

fr dµ .

Proposition 3.6. The L-estimator, or the extended OWA, with weight w is
represented as the Choquet integral (C)

∫
fr dµ, where

µ(A) = 1−
n−|A|∑

i=1

wi .

The Choquet integral with respect to a normalized fuzzy measure µ induces
an L-estimator, or an extended OWA, iff the value µ(A) depends only on
|A|, i.e., there are {µi | i = 1, 2, . . . , n} ⊂ [0, 1] such that µ(A) = µi whenever
|A| = i; the weight w is given by wi = µn−i+1 − µn−i.
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The above proposition implies that the Choquet integral can represent
the arithmetic mean, median, trimmed mean, Winsorized mean, and the k-th
minimum.

4. Various Fuzzy Measures

As shown in the previous section, fuzzy measures (and the Choquet integral)
have great powers of description. If |X| = n, then a measure has n parameters
(or n− 1 parameters when it is normalized) while a fuzzy measure has 2n− 1
parameters (or 2n − 2 parameters when it is normalized). This fact brings
great powers of description to a fuzzy measure; however, it also brings a
problem of complexity.

One solution to this problem is a constraint like the additivity of mea-
sures. Sugeno [1] introduced the λ-fuzzy measure gλ, the normalized fuzzy
measure with the λ-additivity; it has n− 1 parameters. The possibility mea-
sure proposed by Zadeh [10], which is also a normalized fuzzy measure, has
n− 1 parameters. The decomposable measure proposed by Weber [11], which
is an extension of the λ-fuzzy measure and the possibility measure, also has
n− 1 parameters. In this section we discuss these fuzzy measures.

Another solution to the problem is the k-additivity, which is discussed in
the article by Grabisch [12] in this volume. The k-additivity is equivalent to
the concept of inclusion-exclusion covering, which is discussed in the article
by Fujimoto and Murofushi [13] in this volume.

4.1 λ-Fuzzy measures

Definition 4.1. Let λ ∈ (−1,∞). A normalized set function gλ defined on
2X is called a λ-fuzzy measure on X if for every pair of disjoint subsets A
and B of X

gλ(A ∪B) = gλ(A) + gλ(B) + λgλ(A)gλ(B) .

Obviously, if λ = 0, then a λ-fuzzy measure is a normalized additive
measure, i.e., a probability measure. A Dirac measure is a λ-fuzzy measure
for all λ > −1.

A λ-fuzzy measure gλ is a fuzzy measure. Since λ > −1 and gλ is
normalized, 1 + λgλ(A) > 0 for all A ⊂ X. Therefore, since gλ(∅) =
gλ(∅) + gλ(∅) + λgλ(∅)gλ(∅), it follows that gλ(∅)[1 + λgλ(∅)] = 0, and hence
that gλ(∅) = 0. On the other hand, if A ⊂ B ⊂ X, then

gλ(B) = gλ(A) + gλ(B \A) + λgλ(A)gλ(B \A)
= gλ(A) + gλ(B \A)[1 + λgλ(A)]
≥ gλ(A)
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since gλ(B \A) ≥ 0 and 1 + λgλ(A) > 0.
For every λ > −1, define

ψλ(r) =
{

log(1+λ)(1 + λr) if λ 6= 0 ,

r if λ = 0 .
(4.1)

Then for every λ-fuzzy measure gλ on X, the set function ψλ ◦ gλ is a prob-
ability measure on X. Indeed, (ψλ ◦ gλ)(X) = ψλ(gλ(X)) = ψλ(1) = 1 and,
if λ 6= 0, then for every pair of disjoint subsets A and B of X

(ψλ ◦ gλ)(A ∪B) = ψλ(gλ(A ∪B))
= ψλ[gλ(A) + gλ(B) + λgλ(A)gλ(B)]
= log(1+λ){1 + λ[gλ(A) + gλ(B) + λgλ(A)gλ(B)]}
= log(1+λ)[(1 + λgλ(A))(1 + λgλ(B))]
= log(1+λ)(1 + λgλ(A)) + log(1+λ)(1 + λgλ(B))
= (ψλ ◦ gλ)(A) + (ψλ ◦ gλ)(B) .

Since there exists the inverse of ψλ,

ψ−1
λ (r) =

{ 1
λ

[(1 + λ)r − 1] if λ 6= 0 ,

r if λ = 0 ,

for every pair of disjoint subsets A and B of X

gλ(A ∪B) = ψ−1
λ [ψλ(gλ(A)) + ψλ(gλ(B))] ,

and hence for every finite sequence of mutually disjoint subsets A1, A2, . . . ,
An of X,

gλ

(
n⋃

i=1

Ai

)
= ψ−1

λ

[
n∑

i=1

ψλ(gλ(Ai))

]
,

that is,

gλ

(
n⋃

i=1

Ai

)
=





1
λ

(
n∏

i=1

[1 + λgλ(Ai)]− 1

)
if λ 6= 0 ,

n∑

i=1

gλ(Ai) if λ = 0 ;

especially, since X is a finite set, for every subset A of X

gλ(A) =





1
λ

(∏

x∈A

[1 + λgλ({x})]− 1

)
if λ 6= 0 ,

∑

x∈A

gλ({x}) if λ = 0 .
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Let P be a probability measure on X. Then the set function ψ−1
λ ◦ P is

a λ-fuzzy measure. For every function f on X, we define its λ-expectation
Eλ(f ; P ) (or simply Eλ(f)) as

Eλ(f ;P ) = (C)
∫

f d(ψ−1
λ ◦ P ) .

The λ-expectation has the following properties:

(i) If λ ≤ λ′, then
Eλ(f ; P ) ≥ Eλ′(f ; P ) .

(ii)
lim

λ→−1
Eλ(f ; P ) = ess sup

x∈X
f(x) .

(iii)
E0(f ; P ) = E(f ;P ) ,

where the right hand side is the ordinary expectation of f .

(iv)
lim

λ→∞
Eλ(f ; P ) = ess inf

x∈X
f(x) .

Now consider a decision-making problem as follows. When a decision
maker takes an alternative f and a state of nature x ∈ X occurs, the monetary
asset position of the decision maker is given by f(x); that is, the alternative
f is a function from the set X of states of nature into the set R of real
numbers. Assume there is a probability measure P on X and the utility of
the alternative f is given by the λ-expectation Eλ(f) with respect to a fixed
value of λ; that is, Eλ(f) ≥ Eλ(g) iff f is indifferent or preferred to g.

In this decision-making problem, the value of λ is interpreted as a measure
of risk aversion. The sign of λ indicates whether the decision maker is risk
averse or risk prone, in other words, whether E(f) is preferred to f or not,
where E(f) is regarded as the alternative by which the utility E(f) is certainly
obtained regardless of states of nature, that is, [E(f)](x) = E(f) for all x ∈ X.
In contrast, f is an alternative the outcomes of which are generally affected
by states of nature; f is an alternative with risk while E(f) is an alternative
without risk.

First, consider the case of λ being negative. Since Eλ(f) is monotone non-
increasing with respect to λ, it holds that Eλ(f) ≥ E0(f). In addition, since
E0(f) = E(f) and E(f) = Eλ(E(f)), consequently it follows that Eλ(f) ≥
Eλ(E(f)), and therefore that f is indifferent or preferred to E(f). In other
words, the decision maker is risk prone. As λ approaches −1, the difference
between Eλ(f) and E(f) enlarges, that is, the risk proneness increases. In
contrast to this, if λ is positive, then the decision maker is risk averse since
Eλ(f) ≤ E(f), and the risk aversion increases as λ increases. When λ = 0,
the decision maker is risk neutral (Fig. 4.1).

The region of λ representing risk proneness is (−1, 0) and that represent-
ing risk aversion is (0,∞). It therefore appears that the latter region is much
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ess sup f
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ess inf f
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-

Eλ(f)
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Fig. 4.1. Interpretation of parameter λ

wider and two regions are asymmetric. These two regions, however, can be
regarded as symmetrical by the correspondence

λ 7→ λ = − λ

1 + λ
.

It is easily verified that the two λ-fuzzy measures ψ−1
λ ◦ P and ψ−1

λ
◦ P are

dual, i.e.,
(ψ−1

λ
◦ P )(A) = 1− (ψ−1

λ ◦ P )(Ac) ,

and therefore it follows from Proposition 3.2. (iv) that

Eλ(f) = −Eλ(−f) ;

this equality implies that λ and λ represent the mutually symmetrical atti-
tudes toward risk.

4.2 Possibility measures and necessity measures

Definition 4.2. A function π : X → [0, 1] satisfying max{π(x) |x ∈ X} = 1
is called a possibility distribution. A set function Pos is called a possibility
measure on X if there exists a possibility distribution π on X such that for
every A ⊂ X

Pos(A) = max{π(x) |x ∈ A} .

A set function Nec is called a necessity measure on X if there exists a pos-
sibility measure Pos on X such that for every A ⊂ X

Nec(A) = 1− Pos(Ac) .
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The above equation is a mathematical expression of the statement that
‘A is necessary’ is equivalent to ‘not-A is impossible’. A necessity measure
Nec can be represented by the possibility distribution π of Pos as

Nec(A) = 1−max{π(x) |x 6∈ A} .

For every A ⊂ X, Pos(A) = 1 or Pos(Ac) = 1, and Nec(A) = 0 or Nec(Ac) =
0. In addition, Nec(A) ≤ Pos(A) for all A ⊂ X.

The following example is due to Zadeh [10].

Example 4.1. Consider the question ‘How many eggs did Hans eat for break-
fast?’ and let the set of possible answers be X = {1, 2, 3, 4, 5, 6, 7, 8}. We may
associate a possibility distribution π with the right answer x0 by interpreting
π(x) as the degree of ease with which Hans can eat x eggs; for assessing the
degree we may use some explicit or implicit criterion. We may associate a
probability distribution p with x0 by interpreting p(x) as the probability of
Hans eating x eggs for breakfast; the probability may be a subjective one or
the relative frequency. They might be shown in Table 4.1.

Table 4.1. The possibility and probability distributions

x 1 2 3 4 5 6 7 8

π(x) 1 1 1 1 0.8 0.6 0.4 0.2
p(x) 0.1 0.8 0.1 0 0 0 0 0

In the example it holds that p(x) ≤ π(x) for all x ∈ X and more-
over that Pr(A) ≤ Pos(A) for all A ⊂ X, where Pr(A) =

∑
x∈A p(x)

and Pos(A) = max{π(x) |x ∈ A}. This inequality indicates the possibil-
ity/probability consistency principle: a high degree of probability implies a
high degree of possibility while the converse does not always hold, and a low
degree of possibility implies a low degree of probability while the converse
does not always hold. Note that, if Pr(A) ≤ Pos(A) for all A ⊂ X, then it
holds that Nec(A) ≤ Pr(A) ≤ Pos(A) for all A ⊂ X.

A set function Pos is a possibility measure on X iff for every pair of
subsets A and B of X

Pos(A ∪B) = Pos(A) ∨ Pos(B) ;

a set function Nec is a necessity measure on X iff for every pair of subsets A
and B of X

Nec(A ∩B) = Nec(A) ∧Nec(B) ,

where ∨ and ∧ mean max and min, respectively.
Obviously, 0-1 possibility measures and 0-1 necessity measures are pos-

sibility measures and necessity measures, respectively. The possibility distri-
bution function of the 0-1 possibility (or 0-1 necessity) measure focused on
F is the indicator 1F of F .
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4.3 t-Conorms and Decomposable measures

4.3.1 t-Conorms

Definition 4.3. A binary operation on the unit interval [0, 1] is called a t-
conorm if it satisfies the following conditions:

(i) r⊥0 = 0⊥r = r,
(ii) r⊥s = s⊥r,
(iii) (r⊥s)⊥t = s⊥(r⊥t),
(iv) if r ≤ u and s ≤ v, then r⊥s ≤ u⊥v.

Example 4.2. The following are t-conorms, which are frequently used in the
fuzzy set theory.

logical sum:
r ∨ s = max{r, s} .

bounded sum:
r ⊕ s = min{r + s, 1} .

algebraic sum:
r+̇s = r + s− rs .

drastic sum:

r∨· s =





1 if r > 0 & s > 0 ,
r if s = 0 ,
s if r = 0 .

For every t-conorm ⊥ the following holds:

r ∨ s ≤ r⊥s ≤ r∨· s ∀r, s ∈ [0, 1] .

For every r ∈ [0, 1]
r⊥1 = 1⊥r = 1

since 1 ≥ r⊥1 = 1⊥r ≥ 1⊥0 = 1.
A t-conorm ⊥ is said to be Archimedean if for every pair of real numbers

r and s for which 0 < r < s < 1 there is a positive integer n such that

s <
n⊥

i=1
r ,

where
n⊥

i=1
ri = r1⊥ r2⊥ · · · ⊥ rn .

The bounded sum, the algebraic sum, and the drastic sum are Archimedean,
and the logical sum is non-Archimedean. If a t-conorm ⊥ is Archimedean,
then r < r⊥r ∀r ∈ (0, 1). If a t-conorm ⊥ is continuous, and if r < r⊥r
∀r ∈ (0, 1), then it is Archimedean.
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A t-conorm ⊥ is said to be nilpotent if for every r ∈ (0, 1) there is a
positive integer n such that

n⊥
i=1

r = 1 .

The bounded sum and the drastic sum are nilpotent, and neither the logical
sum nor the algebraic sum is nilpotent.

The following theorem is well-known:

Theorem 4.1. A binary operation ⊥ is a continuous Archimedean t-conorm
iff there exists a continuous strictly increasing function ψ : [0, 1] → [0,∞]
such that

r⊥s = ψ(−1)(ψ(r) + ψ(s)) ∀r, s ∈ [0, 1] , (4.2)

where ψ(−1) is the pseudo-inverse of ψ defined as

ψ(−1)(r) =
{

ψ−1(r) if r ≤ ψ(1) ,
1 if r > ψ(1) ,

and for every real number r

r +∞ = ∞+ r = ∞+∞ = ∞ .

A function ψ satisfying (4.2) is called an (additive) generator of ⊥. If ψ
is a generator of ⊥, then so is aψ for a > 0; furthermore, if ϕ is another
generator of ⊥, then there is a positive number a such that ϕ = aψ. If ⊥
has a generator ψ, then the necessary and sufficient condition for ⊥ to be
nilpotent is that ψ(1) < ∞. By the above theorem, if ψ is a generator of ⊥,
then it holds that

n⊥
i=1

ri = ψ(−1)

(
n∑

i=1

ψ(ri)

)
.

The logical sum has no generator since it is non-Archimedean, the
bounded sum has a generator ψ(r) = r ∀r ∈ [0, 1], the algebraic sum has
a generator ψ(r) = − log(1 − r) ∀r ∈ [0, 1], and the drastic sum has no
generator since it is not continuous.

A parameterized family of t-conorms is a family of t-conorms generated
by a parameterized generator. For example, the λ-sums,

r ⊕λ s = min{r + s + λrs, 1} ,

are the parameterized family with the parameterized generator ψλ defined
as in (4.1), where λ is the parameter with range (−1,∞). The λ-sum ⊕λ

becomes the bounded sum when λ = 0, the algebraic sum when λ → −1, and
the drastic sum when λ →∞.
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4.3.2 Decomposable measures

Definition 4.4. Let ⊥ be a t-conorm. A set function m defined on 2X is
called a ⊥-decomposable measure (or simply decomposable measure) on X
if m(∅) = 0, m(X) = 1, and for every pair of disjoint subsets A and B of X

m(A ∪B) = m(A)⊥m(B) .

Obviously a λ-fuzzy measure is a ⊕λ-decomposable measure, a proba-
bility measure is a ⊕-decomposable measure, and a possibility measure is
a ∨-decomposable measure. A 0-1 possibility measure is a ⊥-decomposable
measure for any t-conorm ⊥.

For every t-conorm ⊥, a ⊥-decomposable measure is a normalized fuzzy
measure; the monotonicity follows from the non-decreasingness of ⊥ (Defini-
tion 4.3 (iv)).

Let m be a ⊥-decomposable measure on X. Since X is a finite set, for
every subset A of X

m(A) = ⊥
x∈A

m({x}) .

If ⊥ is not nilpotent, then there is at least one element x ∈ X such that
m({x}) = 1 since ⊥x∈X m({x}) = m(X) = 1.

Let ⊥ be a t-conorm with a generator ψ. A ⊥-decomposable measure m
such that ψ ◦m is a measure, which may take ∞ as its value, is useful (see
subsection 5.3). Note that a set function m is a λ-fuzzy measure iff it is a
⊕λ-decomposable measure such that ψλ ◦m is a probability measure.

5. Various Fuzzy integrals

This section discusses the Šipoš integral, the Sugeno integral, and t-conorm
integral. They and the Choquet integral are the principal fuzzy integrals, and
some other fuzzy integrals are modifications of them.

5.1 Šipoš integral

Definition 5.1. Let µ be a non-monotonic fuzzy measure on X, and f a
function on X with range {a1, a2, . . . , am, b1, b2, . . . , bn} where bn ≤ bn−1 ≤
· · · ≤ b1 ≤ 0 ≤ a1 ≤ · · · ≤ am. The Šipoš integral (Š)

∫
f(x) dµ(x) (or simply

(Š)
∫

f dµ) of f with respect to µ is defined as

(Š)
∫

f dµ =
m∑

i=1

(ai − ai−1) · µ({x|f(x) ≥ ai})

+
n∑

i=1

(bi − bi−1) · µ({x|f(x) ≤ bi}) ,

where a0 = b0 = 0 (Fig. 5.1).
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(Š)

Z
f dµ = ©1 +©2 +©3 +©4

©1 = (a1 − a0) · µ({x|f(x) ≥ a1})
©2 = (a2 − a1) · µ({x|f(x) ≥ a2})
©3 = (b1 − b0) · µ({x|f(x) ≤ b1})
©4 = (b2 − b1) · µ({x|f(x) ≤ b2})
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µ({x|f(x) ≤ b1})

¾ -
µ({x|f(x) ≥ a1})

¾ -

µ({x|f(x) ≤ b2})
¾ -

µ({x|f(x) ≥ a2})

Fig. 5.1. The Šipoš integral of f

We can define (Š)
∫

A
f dµ as

(Š)
∫

A

f dµ = (Š)
∫

f1A dµ = (Š)
∫

f dµA

since the last two integrals are equal to one another for every function f on
X.

The Šipoš integral has the following properties.

Proposition 5.1. Let a be a non-negative real number, f and g functions on
X, and A a subset of X.

(i) If f is non-negative, then

(Š)
∫

f dµ = (C)
∫

f dµ .

Especially

(Š)
∫

1A dµ = µ(A) .
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(ii) If µ is a fuzzy measure and f ≤ g, then

(Š)
∫

f dµ ≤ (Š)
∫

g dµ .

(iii)

(Š)
∫

af dµ = a · (Š)
∫

f dµ .

Especially

(Š)
∫

(−f) dµ = −(Š)
∫

f dµ .

(iv)

(Š)
∫

f dµ = (Š)
∫

f+ dµ− (Š)
∫

f− dµ ,

where f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}.
(v)

(Š)
∫

f d(a · µ) = a · (Š)
∫

f dµ .

(vi) If N is a null set, and if f(x) = g(x) for all x 6∈ N , then

(Š)
∫

f dµ = (Š)
∫

g dµ .

5.2 Sugeno integral

The Sugeno integral is defined only for functions whose range is included in
[0, 1] and normalized fuzzy measures.

Definition 5.2. Let µ be a normalized fuzzy measure on X and f a function
on X with range {a1, a2, . . . , an} where 0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ 1. The
Sugeno integral −∫ f(x) ◦ µ(x) (or simply −∫ f ◦ µ) of f with respect to µ is
defined as

−
∫

f ◦ µ =
n∨

i=1

[ai ∧ µ({x|f(x) ≥ ai})] .

The Sugeno integral has the following properties.

Proposition 5.2. Let µ and ν be normalized fuzzy measures, f and g func-
tions from X into [0, 1], A a subset of X, and a ∈ [0, 1].

(i)

−
∫

1A ◦ µ = µ(A) .

(ii) If f ≤ g, then

−
∫

f ◦ µ ≤ −
∫

g ◦ µ .
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(iii)

−
∫

(a ∨ f) ◦ µ = a ∨
(
−
∫

f ◦ µ

)
.

(iv) ∣∣∣∣ −
∫

f ◦ µ − (C)
∫

f dµ

∣∣∣∣ ≤ 1
4

.

(v) If µ is a 0-1 fuzzy measure, then

−
∫

f ◦ µ = (C)
∫

f dµ .

(vi) If µ ≤ ν, then

−
∫

f ◦ µ ≤ −
∫

f ◦ ν .

(vii)

−
∫

f ◦ (µ ∨ ν) =
(
−
∫

f ◦ µ

)
∨

(
−
∫

f ◦ ν

)
.

(viii) If N is a null set, and if f(x) = g(x) for all x 6∈ N , then

−
∫

f ◦ µ = −
∫

g ◦ µ .

From statements (v) and (vi) and Proposition 3.4 it follows that for every
normalized fuzzy measure µ on X and for every function f from X into [0, 1]

min
x∈X

f(x) ≤ −
∫

f ◦ µ ≤ max
x∈X

f(x) .

5.3 t-Conorm integral

Definition 5.3. A t-conorm system is a quadruplet (4, ⊥, q, ¦) consisting
of continuous t-conorms 4, ⊥, q, and an operation ¦ : [0, 1] × [0, 1] → [0, 1]
such that

TS1: ¦ is continuous on (0, 1]2,
TS2: a ¦ r = 0 ⇐⇒ a = 0 or r = 0,
TS3: if r⊥s < 1,

a ¦ (r⊥s) = (a ¦ r)q (a ¦ s) ,

TS4: if a4b < 1,
(a4b) ¦ r = (a ¦ r)q (b ¦ r) .

We denote generators of 4, ⊥, and q, if exist, by ϕ, ψ, and ζ, respectively.
Many t-conorm systems are trivial and/or useless; for example, a ¦ r = const.
for all a, r ∈ (0, 1]. The non-trivial t-conorm systems are following ones:
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– Max type:
The t-conorms 4, ⊥, and q are the max operator ∨.

– Archimedean type:
The t-conorms4, ⊥, and q have their generators ϕ, ψ, and ζ, respectively,
and for all a ∈ [0, 1] and r ∈ [0, 1]

a ¦ r = ζ(−1)(ϕ(a) · ψ(r)) .

We call the triplet (ϕ, ψ, ζ) the generator of (4, ⊥, q, ¦).

Definition 5.4. A ⊥-decomposable measure m is said to be normal iff (i) or
(ii) holds:

(i) ⊥ = ∨,
(ii) ⊥ has a generator ψ and ψ ◦m is a measure.

Obviously, λ-fuzzy measures and possibility measures are normal.

Definition 5.5. Let F = (4,⊥,q, ¦) be a t-conorm systems, m a normal
⊥-decomposable measure on X, and f a function from X into [0, 1]. The F-
integral (or t-conorm integral) (F)

∫
f(x) dm(x) (or simply (F)

∫
f dm) of f

with respect to m is defined as

(F)
∫

f dm =
∐

x∈X

f(x) ¦m({x}) . (5.1)

If the t-conorm system F = (4,⊥,q, ¦) is Archimedean, i.e., it has a
generator (ϕ, ψ, ζ), then the t-conorm integral is expressed as

(F)
∫

f dm = ζ(−1)

(∫
ϕ(f) d(ψ ◦m)

)
,

where the integral of the right hand side is the ordinary integral.

Definition 5.6. Let 4 be a t-conorm. Define a binary operation −4 on [0, 1]
as

a−4 b = inf{c | b4c ≥ a} .

If 4 = ∨, then

a−4 b =
{

a if a ≥ b ,
0 if a < b ;

and, if 4 has a generator ϕ, then

a−4 b = ϕ(−1)(0 ∨ [ϕ(a)− ϕ(b)]) .

Obviously, a−4 0 = a. If 4 is continuous, then (a−4 b)4b = a whenever
a ≥ b.
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Definition 5.7. Let F = (4,⊥,q, ¦) be a non-trivial t-conorm systems,
µ a normalized fuzzy measure on X, and f a function on X with range
{a1, a2, . . . , an} where a1 ≤ a2 ≤ · · · ≤ an. The F-fuzzy integral (or t-conorm
fuzzy integral) (F)

∫
f(x) dµ(x) (or simply (F)

∫
f dµ) of f with respect to µ

is defined as

(F)
∫

f dµ =
n∐

i=1

(ai −4 ai−1) ¦ µ({x|f(x) ≥ ai}) , (5.2)

where a0 = 0.

If µ is a normal ⊥-decomposable measure, then the (4,⊥,q, ¦)-fuzzy
integral with respect to µ coincides with the (4,⊥,q, ¦)-integral with respect
to µ. The (∨,∨,∨,∧)-fuzzy integral is the Sugeno integral. If (4,⊥,q, ¦) has
a generator (ϕ,ψ, ζ), then (4,⊥,q, ¦)-fuzzy integral can be represented as

(F)
∫

f dµ = ζ(−1)

(
(C)

∫
ϕ(f) d(ψ ◦m)

)
,

where the integral of the right hand side is the Choquet integral.

References

1. Sugeno, M. (1974): Theory of fuzzy integrals and its applications, Doctoral The-
sis, Tokyo Institute of Technology

2. Denneberg, D. (1997): Non-additive measure and integral, 2nd ed., Kluwer Aca-
demic

3. Denneberg, D. (1999): Non-additive measure and integral, basic concepts and
their role for applications, in: M. Grabisch, T. Murofushi, and M. Sugeno, Eds.,
Fuzzy Measures and Integrals: Theory and Applications, Springer-Verlag

4. Benvenuti, B. and Mesiar, R. (1999): Integrals with respect to general fuzzy
measure, in: M. Grabisch, T. Murofushi, and M. Sugeno, Eds., Fuzzy Measures
and Integrals: Theory and Applications, Springer-Verlag

5. Imaoka, H. (1999): Generalized fuzzy integral, in: M. Grabisch, T. Murofushi,
and M. Sugeno, Eds., Fuzzy Measures and Integrals: Theory and Applications,
Springer-Verlag

6. Murofushi, T., Sugeno, M. (1991): A theory of fuzzy measures: representations,
the Choquet integral, and null sets, J. Math. Anal. Appl. 159, 532–549

7. Murofushi, T., Sugeno, M. , Machida, M. (1994): Non-monotonic fuzzy measures
and the Choquet integral, Fuzzy Sets and Systems 64, 73–86

8. Murofushi, T., Sugeno, M. (1993): Some quantities represented by the Choquet
integral, Fuzzy Sets and Systems, 56, 229–235

9. Yager, R.R. (1986): On ordered weighted averaging aggregation operators in
multicriteria decision making, IEEE trans. Systems, Man & Cybern. 18, 183–190

10. Zadeh, L.A. (1978): Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets
and Systems 1, 3–28

11. Weber, S. (1984): ⊥-Decomposable measures and integrals for Archimedean
t-conorms ⊥, J. Math. Anal. Appl. 101, 114–138



35

12. Grabishc, M. (1999): The interaction and Möbius representations of fuzzy
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A. Measures and Integral

In the appendix, we discuss measures on infinite sets and the integral on
infinite sets. Arguments on signed measures on infinite sets are omitted.

A.1 Measures

By an extended real number we mean a real number, the positive infinity +∞
(or simply ∞), or the negative infinity −∞. The following relations among
±∞ and real numbers r hold:

(±∞) + (±∞) = r + (±∞) = (±∞) + r = ±∞ ,

r(±∞) = (±∞)r =





±∞ if r > 0 ,

0 if r = 0 ,

∓∞ if r < 0 ,

(±∞)(±∞) = +∞ ,

(±∞)(∓∞) = −∞ ,

r/(±∞) = 0 ,

−∞ < r < +∞ .

Neither (±∞) + (∓∞) nor (±∞)/(±∞) can be defined. We denote the set
of extended real numbers by R and the set of non-negative extended real
numbers by R+,

Definition A.1. Let µ be an extended real-valued set function defined on a
family X of subsets of a set X.

(i) The set function µ is said to be σ-additive if

m

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

whenever {An} is a disjoint sequence of sets in X (i.e., {An} ⊂ X and
Ai ∩Aj = ∅ for i 6= j) and

⋃∞
n=1 An ∈ X .
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(ii) The set function µ is said to be finite if −∞ < µ(A) < ∞ for all A ∈ X .
(iii) The set function µ is said to be continuous from below if limn→∞m(An) =

m(A) whenever {An} ⊂ X , and An ↑ A ∈ X , where An ↑ A means that
{An} is a non-decreasing sequence and

⋃∞
n=1 An = A.

(iv) The set function µ is said to be continuous from above if limn→∞m(An) =
m(A) whenever {An} ⊂ X , An ↓ A ∈ X , and |m(Ak)| < ∞ for some
k. where An ↓ A means that {An} is a non-increasing sequence and⋂∞

n=1 An = A.

The additivity and monotonicity of µ are defined as in Definition 2.1 on
condition that all sets in Definition 2.1 are in X .

If ∅ ∈ X and µ(∅) = 0, then σ-additivity of µ implies additivity. If ∅ ∈ X
and µ(∅) = 0, and if X is a finite family, e.g., X is a finite set, then additivity
of µ is equivalent to σ-additivity. If ∅ ∈ X and µ is finite and additive, then
µ(∅) = 0 (cf. the remark below Definition 2.1).

Definition A.2. A family X of subsets of X is called a σ-algebra if X sat-
isfies the following conditions:

(i) ∅ ∈ X and X ∈ X .
(ii) If A ∈ X , then Ac ∈ X .
(iii) If {An} ⊂ X , then

⋃∞
n=1 An,

⋂∞
n=1 An ∈ X .

The pair (X,X ) of a set X and a σ-algebra X of subsets of X is called a
measurable space. When (X,X ) is a measurable space, a set A in X is said
to be X -measurable (or simply measurable).

Obviously the power set 2X is the largest σ-algebra and {∅, X} is the smallest
one.

Let X be a σ-algebra and µ an extended real-valued set function defined
on X . Then the σ-additivity of µ implies the continuity from below. If µ
is additive and continuous from below, then it is σ-additive and continuous
from above.

Definition A.3. Let (X,X ) be a measurable space. A measure on (X,X )
(or on X ) is an extended real-valued, non-negative, σ-additive set function
defined on X which vanishes at the empty set. A measure P on (X,X ) is
called a probability measure if P (X) = 1. The triplet (X,X , m) of a set X,
a σ-algebra X of subsets of X, and a measure µ on X is called a measure
space.

The Lebesgue measure is one of the most important measures. The fol-
lowing are brief explanations of the Lebesgue measures on R and R2. Details
are shown in elementary textbooks on measure theory.

Example A.1. Let M be the σ-algebra of Lebesgue measurable sets in R.
The family M is very large; intervals, open sets, closed sets, and Borel sets



37

are all in M. The Lebesgue measure λ on M measures the length of Lebesgue
measurable sets; for example, if a ≤ b, then

λ((a, b)) = λ((a, b]) = λ([a, b)) = λ([a, b]) = b− a .

If a ≤ b ≤ c, then it follows that (a, b] ∩ (b, c] = ∅, (a, c] = (a, b] ∪ (b, c], and
c− a = (b− a) + (c− b), and therefore the additivity holds (Fig. A.1):

λ((a, c]) = λ((a, b]) + λ((b, c]) .

-a b c

λ((a, b])¾ - λ((b, c])¾ -

λ((a, c])¾ - Fig. A.1. Additivity of
length

Let {an} and {bn} be sequences of real numbers such that an ≤ bn for all
n, an ↓ a, and bn ↑ b (for example, an = 1/n, bn = 3 − (1/n), a = 0, and
b = 3). In addition, let An = (an, bn) for all n and A = (a, b). Then An ↑ A,
λ(An) = bn−an for all n, and λ(A) = b−a. Since an ↓ a and bn ↑ b, it follows
that (bn − an) ↑ (b− a), and hence this is an example of the continuity from
below: λ(An) ↑ λ(A) (Fig. A.2). Similarly, we can easily make an example of
the continuity from above.

-a· · · a2 a1 b1 b2 · · · b

λ((a1, b1))

¾ -

λ((a2, b2))¾ -

...

λ((a, b))¾ - Fig. A.2. Continuity of
length

Example A.2. Let M be the σ-algebra of Lebesgue measurable sets in R2.
The Lebesgue measure λ on M measures the area of Lebesgue measurable
sets; for example, if a ≤ b and c ≤ d, then

λ((a, b]× (c, d]) = (b− a) · (d− c)

(Fig. A.3). We know that the area is additive (Fig. A.4), and that the area
is continuous (Fig. A.5).

Definition A.4. Let (X,X ,m) be a measure space. A measurable set N is
called a null set (or m-null set) if m(N) = 0.
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Fig. A.4. Additivity of area

(a) Continuity from below (b) Continuity from above

Fig. A.5. Continuity of area

A.2 Integral

Let (X,X ) be a measurable space.

Definition A.5. An extended real-value function f defined on X is said to
be X -measurable (or simply measurable) if for every real number r, the set
{x | f(x) > r} is X -measurable (Fig. A.6). A simple function is a measurable
function whose range is a finite subset of R.

r

6

-

y

X
| {z }

{x | f(x) > r}

y = f(x)

Fig. A.6. Measurability of
function f
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Note that in the above definition the set {f(x) > r} can be replaced
with any of {x | f(x) ≥ r}, {x | f(x) < r}, and {x | f(x) ≤ r}. If f and g are
X -measurable functions, then so are af + bg (a and b are constants), f · g,
max{f, g}, min{f, g}, and |f |. If f is a simple function, then it is represented
as

f =
n∑

i=1

ai1Ai
, (A.1)

where {ai} ⊂ R and {Ai} ⊂ X .

Definition A.6. Let (X,X ,m) be a measure space. The integral
∫

f(x) dm(x)
(or simply

∫
f dm) of a measurable function f with respect to m is defined

in steps as follows.

(i) For a non-negative simple function f =
∑n

i=1 ai1Ai
,

∫
f dm =

n∑

i=1

aim(Ai) .

(See Figs. 2.2–2.5.)

(ii) For a non-negative measurable function f ,
∫

f dm = sup
{∫

g dm

∣∣∣∣ g is a simple function, 0 ≤ g ≤ f

}
.

(See Fig. A.7.)

6

-

y

X

HHj

y = f(x)

HHY
y = g(x)

Fig. A.7. Simple function g
such that g ≤ f

(iii) For a measurable function f ,
∫

f dm =
∫

f+ dm−
∫

f− dm ,

where f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0} (Fig. A.8), and
at least one of

∫
f+dm and

∫
f−dm is finite.

The integral
∫

A
f(x) dm(x) over a measurable set A of f with respect to

m is defined as in Definition 2.7. The same proposition as Proposition 2.2
holds on condition that all sets and functions are measurable.

The following example illustrates the meaning of the integral. However,
it is not mathematically strict.
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6

-

y

X

y = f(x)

6

-

y

X

y = f+(x)

6

-

y

X

y = f−(x)

Fig. A.8. Function f , its
positive part f+, and its neg-
ative part f−

Example A.3. Consider a wire with segmentally homogeneous density; the
wire is segmented into A1, A2, . . . , An, and the line density of each part Ai

is di g/cm (Fig. A.9). The total mass w g of this wire is expressed as

w =
n∑

i=1

di · λ(Ai) ,

where λ is a measure which measures the length of parts of the wire in cm.

d1 d2 d3 d4 d5

| {z }
A1

| {z }
A2

| {z }
A3

| {z }
A4

| {z }
A5

Fig. A.9. Segmentally
homogeneous wire

Next consider another wire whose line density at position x is f(x) g/cm.
The line density f(x) can be regarded as the limit of density of a part A
containing x when A becomes infinitely short. (The line density of the seg-
mentally homogeneous wire at position x ∈ Ai is di g/cm.) The total mass
w g of the wire is also expressed as
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w =
∫

f dλ

and the mass wA g of a part A is expressed as

wA =
∫

A

f dλ .

Similar arguments can be applied to higher dimensions. In two dimension,
objects are shifted from wires to metallic plates, the density f(x) is shifted
from line density (g/cm) to surface density (g/cm2), and the quantity mea-
sured by λ is shifted from the length (cm) to the area (cm2). The integral∫

f dλ represents the mass (g) of the plate. The images of segmentally ho-
mogeneous and heterogeneous metallic plates are shown in Figs. A.10 and
A.11, respectively. In three dimensions, the object becomes a lump of metal,
the integrand f(x) is volume density (g/cm3), and the measure λ measures
the volume (cm3). Regardless of dimensions, the integral

∫
f dλ expresses the

mass (g) of the object.
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Fig. A.10. Segmentally homogeneous
metallic plate
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Fig. A.11. Heterogeneous metallic plate


